Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1661 results about "Carbon nanomaterials" patented technology

Carbon nanomaterials are a family of carbon-based materials with at least one dimension in the nanomater range. One of the most widely studied and used carbon nanomaterials are carbon nanotubes and nanofibres.

Silicon carbon composite material and preparation method thereof

The invention discloses a silicon carbon composite material and a preparation method thereof. The material disclosed by the invention comprises a porous silicon substrate, a one-dimensional carbon nano material and amorphous carbon, wherein the one-dimensional carbon nano material is a carbon nano tube or carbon nano fiber. The preparation method disclosed by the invention comprises the following steps: preparing the porous silicon substrate; loading a catalyst precursor; and carrying out the chemical vapor deposition. The one-dimensional carbon nano material directly grows on the porous silicon substrate, and the one-dimensional carbon nano material and the porous silicon substrate are coated with the amorphous carbon. The silicon carbon composite material provided by the invention is suitable for the cathode material of a lithium ion battery, and has the advantages of high capacity and stable circulation performance. A constant-current charge and discharge test is carried out under the 300mA / g current density, and the silicon carbon composite material disclosed by the invention has the characteristics that the first reversible capacity is 1149mAh / g; the reversible capacity is 1087mAh / g after the circulation is carried out for 100 times; and the capacity conservation rate is up to 95%.
Owner:DONGGUAN KAIJIN NEW ENERGY TECH

Preparation method for carbon nanomaterial enhanced aluminum base composite material

The invention discloses a preparation method for a carbon nanomaterial enhanced aluminum base composite material, which is similar to a powder metallurgy method, i.e. an aluminum material cladding powder processing and forming method. The preparation method is mainly used for solving the problem of precise mould requirement in the powder metallurgy process. The method is realized by the following steps of: 1) carrying out annealing treatment to pure aluminum or aluminum alloy material, carrying out alkali liquor cleaning and clean water cleaning to the surface of the pure aluminum or aluminum alloy material, and airing or drying after cleaning; 2) fully mixing and evenly stirring the pure aluminum or aluminum alloy powder with carbon nanomaterial at a certain ratio, i.e. at the mass fraction of the carbon nanomaterial of 0.1-8%; 3) cladding mixed powder by the pure aluminum or aluminum alloy material processed in step 1, compacting, sealing, and pressing into a precast block by a press; and 4) rolling the precast block obtained in step 3 into a final finished product. The preparation method for the carbon nanomaterial enhanced aluminum base composite material, which is disclosed by the invention, has the advantages of low cost, short flow, simpleness in operation and easiness in realizing industrialization.
Owner:NORTHEASTERN UNIV

Carbon nano material/metal nano material composite nano ink

The invention provides a carbon nano material/metal nano material composite nano ink which comprises solvent, an additive, a carbon nano material and a metal nano material. The carbon nano material/metal nano material composite nano ink is characterized in that the solvent can comprise water, alcohol organic solvent (ethanol(alcohol), isopropanol, n-butanol and the like), ester organic solvent (ethyl acetate, butyl acetate, ethylene-propylene acetate and the like), benzene organic solvent (methylbenzene, dimethylbenzene and the like) and ketone organic solvent (cyclohexanone, acetone, methylethylketone, butanone and the like); the additive comprises surfactant, pH value stabilizer, defoaming agent, diluter, reinforcer and the like; the carbon nano material comprises a single-layer carbon nanotube, a double-layer carbon nanotube, a multi-layer carbon nanotube and graphene; the metal (copper, silver, gold, platinum, nickel and the like, also including an alloy nano material, an ITO metal composite nano material and the like) nano material further comprises a metal nanoparticle, a metal nanowire or a metal nanotube; the components of the nano ink must include one carbon nano component and one metal nano component, such as a single-layer carbon nanotube and copper nanowire composite ink, a double-layer carbon nanotube and silver nanowire composite ink, a single-layer carbon nanotube and silver nanoparticle composite ink or any other possible combination; the components can be regulated according to specific applications; and a composite nano conductive film can be formed on different bases through different electronic printing processes. The ink can be used in the printing of a flexible base material and can be conveniently prepared into a flexible conductive film.
Owner:杨阳

Method for detecting upconversion fluorescence resonance energy transfer by using carbon nanomaterial as receptor

The invention discloses a method for detecting fluorescence resonance energy transfer by using a water-soluble upconversion fluorescence nanomaterial as a fluorescence donor and using a carbon nanomaterial as a fluorescence receptor. The method comprises the following specific steps: (1) preparing the water-soluble upconversion fluorescence nanomaterial and performing surface marker to obtain a fluorescence donor solution; (2) preparing the carbon nanomaterial to obtain a fluorescence receptor solution; (3) mixing the fluorescence donor solution and the fluorescence receptor solution for incubation and measuring the fluorescence intensity to obtain a fluorescence quenching curve; (4) mixing certain-concentration fluorescence donor solution and certain-concentration fluorescence receptor solution for incubation, adding a target object with different concentrations for continuous incubation, measuring the fluorescence intensity and drawing a standard curve; (5) calculating the concentration of the target object in an actual sample according to the standard curve. According to the method, interference of the background fluorescence of a biological sample can be avoided, detection to serum or the target object in a whole blood sample can be directly realized, the washing and separation processes are not needed, the detection speed is high, and the cost is low.
Owner:GUANGZHOU IMPROVE MEDICAL TECH CO LTD

Ultra-thin, self-supporting, flexible and all-solid-state super capacitor and manufacturing method thereof

The invention discloses an ultra-thin, self-supporting, flexible and all-solid-state super capacitor and a manufacturing method of the ultra-thin, self-supporting, flexible and all-solid-state super capacitor. The super capacitor comprises a position electrode, a solid electrolyte and a negative electrode, wherein the solid electrolyte is located between the positive electrode and the negative electrode to separate the positive electrode and the negative electrode, and the solid electrolyte evenly permeates inside a porous structure of the positive electrode and a porous structure of the negative electrode. The positive electrode and the negative electrode are made of carbon nanometer materials or carbon nanometer composite materials, and the outer side of the positive electrode and the outer side of the positive electrode are not completely embedded by the solid electrolyte and can be used for collecting currents. The thickness of the super capacitor is within the range of 10 nanometers to 10 micrometers, the inner portion of the capacitor is provided with no diaphragm, the outer portion of the capacitor needs no metal current collecting electrode or encapsulation, self-supporting can be realized, and at the same time the capacitor has high specific capacitance, high power density, high energy density, long life and high stability. The super capacitor has the advantages of being superior in performance, simple in manufacturing technology, and capable of satisfying the development demands of flexible, miniature, light electronic products at the same time, and having wide application prospects.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Conductive fiber with scabbard type structure and preparation method thereof

The invention discloses a conductive fiber with a scabbard type structure and a preparation method thereof. The preparation method comprises the following steps: 1) preparing a carbon nano material into a solution 1; 2) preparing the polymer into a solution 2; 3) passing the solution 1 through an inner pipe of a coaxial spinning needle head at a certain speed, at the same time, passing the solution 2 through an outer pipe of the coaxial spinning needle head at a certain speed, extruding the two into a coagulation bath, so as to form a gel fiber with scabbard type structure preliminarily; 4) transferring the gel fiber to a solution containing a reducing agent and conducting chemical reduction at a certain temperature; and 5) cleaning the gel fiber subjected to reduction in the step 4 with a solvent, drying and collecting the gel fiber to a roller, so as to obtain the conductive fiber with scabbard type structure. The invention has the advantages of simpleness, low cost and strong applicability, and is suitable for large-scale industrial production; and the produced fiber with scabbard type structure has excellent electrical and mechanical properties and can be used in the fields of power transmission, antistatic fabrics and engineering materials, etc.
Owner:杭州德烯科技集团有限公司

Preparation method for three-dimensional porous graphene doping and coating lithium titanate composite anode material

The invention discloses a preparation method for a three-dimensional porous graphene doping and coating lithium titanate composite anode material. The problem that a high ratio property of lithium titanate is poor can be solved by a doping vario-property of a carbon nano material to the lithium titanate, and the spinel structure of the lithium titanate can not be affected. A nano carbon layer made of the carbon nano material is doped in a carbon nano material doping lithium titanate composite material to have an effect of an electrical transmission cushion layer, so that a cyclic property of the carbon nano material doping lithium titanate composite material is improved, besides, an introduction of the carbon nano material can effectively restrain a gathering of lithium titanate particles in a heat treatment process, and simultaneously diffusion coefficients of lithium-ions in the carbon nano material doping lithium titanate composite material are increased. According to the preparation method for the three-dimensional porous graphene doping and coating lithium titanate composite anode material, the prepared three-dimensional porous grapheme has a high specific surface area, and thereby the high ratio property of the lithium titanate is further improved.
Owner:NINGBO UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products