Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

422results about How to "Improve power performance" patented technology

Electromagnetic coupling

An orthogonal electrical coupling relies on electromagnetic coupling for the inner connection, as opposed to direct contact between conductors. A conductor on one of the lines is connected to a ground plane which is adjacent to a resonant slot. Microwave energy is coupled to the slot, thereby exciting the slot. A second conductor is on the opposite side of the ground plane from the first conductor. Microwave energy from the excited resonant slot passes to the second conductor, thereby allowing contactless interconnection between the first conductor and the second conductor. The coupling may emphasize certain modes of propagation relative to other possible modes of propagation. Specifically, the ground plane and slot may be enclosed in a cavity of a size such that the cavity does not support any natural mode propagation inside the cavity. Instead, the coupling may have a cavity in which a transverse electromagnetic (TEM) mode is propagated.
Owner:RAYTHEON CO

Structurally embedded intelligent power unit

An electrical power system for a spacecraft or other vehicle or structure comprising a structural member containing an integrated solid-state power source is disclosed. The power source includes a solar cell system and an energy storage system that are combined into a single unit or package, and in certain embodiments, are configured into the shape of a flexible aerobot balloon or a rigid nanosat surface panel. The power components of a preferred lightweight power unit, include thinly layered photovoltaic cells, a rechargeable lithium solid polymer electrolyte battery, a capacitor, electronics and thermal management capability.
Owner:LITHIUM POWER TECH

Hard carbon materials

InactiveUS20130252082A1Optimized lithium storageOptimized utilization propertyHybrid capacitor electrodesSecondary cellsElectrical devicesLithium-ion battery
The present application is directed to hard carbon materials. The hard carbon materials find utility in any number of electrical devices, for example, in lithium ion batteries. Methods for making the disclosed carbon materials are also disclosed.
Owner:BASF AG

Compensator for removing nonlinear distortion

The present invention is a computationally-efficient compensator for removing nonlinear distortion. The compensator operates in a digital post-compensation configuration for linearization of devices or systems such as analog-to-digital converters and RF receiver electronics. The compensator also operates in a digital pre-compensation configuration for linearization of devices or systems such as digital-to-analog converters, RF power amplifiers, and RF transmitter electronics. The compensator effectively removes nonlinear distortion in these systems in a computationally efficient hardware or software implementation by using one or more factored multi-rate Volterra filters. Volterra filters are efficiently factored into parallel FIR filters and only the filters with energy above a prescribed threshold are actually implemented, which significantly reduces the complexity while still providing accurate results. For extremely wideband applications, the multi-rate Volterra filters are implemented in a demultiplexed polyphase configuration which performs the filtering in parallel at a significantly reduced data rate. The compensator is calibrated with an algorithm that iteratively subtracts an error signal to converge to an effective compensation signal. The algorithm is repeated for a multiplicity of calibration signals, and the results are used with harmonic probing to accurately estimate the Volterra filter kernels. The compensator improves linearization processing performance while significantly reducing the computational complexity compared to a traditional nonlinear compensator.
Owner:LINEARITY LLC

High frequency switch circuit

A high-frequency switch circuit has a plurality of high-frequency switches for passing and blocking a high-frequency signal between an input terminal and an output terminal depending on a control potential applied as a control signal, a high-frequency detecting terminal for detecting high-frequency signal passing through the high-frequency switch which is in ON-state, and a voltage boosting circuit for generating a potential for increasing the control potential applied to the high-frequency switch which is in ON-state in order to increase difference between the control potential applied to the high-frequency switch which is in an ON-state and the control potential applied to the high-frequency switch which is in an OFF-state, depending on an intensity or amplitude of the detected high-frequency signal.
Owner:NEC CORP

Electrolytes for wide operating temperature lithium-ion cells

Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.
Owner:CALIFORNIA INST OF TECH

Super capacitor-based electric automobile hybrid power control system

The invention discloses a super capacitor-based electric automobile hybrid power control system. The system comprises a super capacitor, a power storage battery, a motor, a motor driving control device, a vehicle-mounted measuring unit, a first bidirectional direct current (DC) / DC converter and a second bidirectional DC / DC converter, wherein the motor driving control device is connected with the motor; the vehicle-mounted measuring unit is connected with the motor driving control device through a controller area network (CAN) bus; the first bidirectional DC / DC converter is connected between the super capacitor and the motor driving control device; and the second bidirectional DC / DC converter is connected between the power storage battery and the motor driving control device. Through the system, the super capacitor provides high-power current when an electric automobile is started and accelerated and climbs, so that the power performance of the entire automobile is enhanced; instant heavy current generated by a generator is quickly stored during braking; the braking feedback energy is absorbed; the energy is saved; and the cyclic service life of the storage battery is prolonged. By using the system, the power performance and the economy of the electric vehicle are improved, the storage battery is protected, and the stability of the system is enhanced.
Owner:RES INST OF XIAN JIAOTONG UNIV & SUZHOU

Method for preparing nitrogen-doped porous carbon nanofiber cloth

The invention relates to a method for preparing nitrogen-doped porous carbon nanofiber cloth. The nitrogen-doped porous carbon nanofiber cloth is prepared by adding a nitrogen-rich compound into an organic solution, electrospinning and subsequent carbonizing-activating, has a self-support structure, omits preparation steps of size mixing, coating and the like, needs no conductive agent or binder, and can be directly used as the negative electrode of a lithium ion battery. The electrochemical performance of the negative electrode material of the lithium ion battery is improved by doping nitrogen and activating and forming pores; compared with a commercial graphite lithium ion battery negative electrode material, the nitrogen doping porous carbon nanofiber cloth used as the negative electrode material of the lithium ion battery has simple steps for preparing the electrode, has higher specific capacity, good power performance and circulatory stability. The method also can be used as the electrode material of super capacitors and other novel batteries.
Owner:TSINGHUA UNIV

Positive electrode active materials for secondary batteries and methods of preparing same

InactiveUS6878490B2Deliver in short periodRetake in short periodAluminium compoundsAlkali titanatesPower capabilityLithium metal
The present invention is a positive electrode active material that can be used in secondary lithium and lithium-ion batteries to provide the power capability, i.e., the ability to deliver or retake energy in short periods of time, desired for large power applications such as power tools, electric bikes and hybrid electric vehicles. The positive electrode active material of the invention includes at least one electron conducting compound of the formula LiM1x−y{A}yOz and at least one electron insulating and lithium ion conducting lithium metal oxide, wherein M1 is a transition metal, {A} is represented by the formula ΣwiBi wherein Bi is an element other than M1 used to replace the transition metal M1 and wi is the fractional amount of element Bi in the total dopant combination such that Σwi=1; Bi is a cation in LiM1x−y{A}yOz; 0.95≦x≦2.10; 0≦y≦x / 2; and 1.90≦z≦4.20. Preferably, the lithium metal oxide is LiAlO2 or Li2M2O3 wherein M2 is at least one tetravalent metal selected from the group consisting of Ti, Zr, Sn, Mn, Mo, Si, Ge, Hf, Ru and Te. The present invention also includes methods of making this positive electrode active material.
Owner:UMICORE AG & CO KG

Silicon/graphene laminar composite material for lithium ion battery cathode and preparation method thereof

The invention relates to a preparation method of a silicon / graphene laminar composite material for lithium ion battery cathode. The composite material adopts a laminar sandwich structure, silicon nano-particles are dispersed on each lamina of the grapheme, the laminas of the grapheme are separated from one another by the silicon nano-particles and the edges of the laminas are in lapped joint so as to constitute a laminar conductive network structure. The preparation method thereof comprises the steps of: formulating anhydrous silicon tetrachloride, surface active agent, sodium naphthalene and graphite oxide to tetrahydrofuran solution, adding the tetrahydrofuran solution into a reactor for reaction in vacuum at the temperature ranging from 380 to 400 DEG C, filtering the reactant to result in the product, and then washing, drying and heating the product to obtain the silicon / grapheme composite material. The preparation method of the invention has the advantages of simple preparation process and great easiness for industrial production; and the silicon / graphene laminar composite material prepared according to the method includes excellent conductivity, power performance, electrochemical activity and cycle stability, and is particularly suitable for manufacturing lithium ion battery cathode.
Owner:深圳清研紫光科技有限公司

Composites of porous nano-featured silicon materials and carbon materials

InactiveUS20190097222A1Improve power performanceOptimized lithium storage and utilization propertiesTransportation and packagingNegative electrodesSiliconElectric energy
Composites of porous nano-featured silicon and various materials, such as carbon, are provided. The composites find utility in various applications, such as electrical energy storage electrodes and devices comprising the same.
Owner:GRP 14 TECH INC

Light-weight high-power electrical machine

InactiveUS6891302B1High energyMotor/generator magnetic lossHybrid vehiclesWindingsAlternatorElectrical polarity
A brushless electrical machine, usable as a motor, generator, or alternator, has a rotor that is comprised of a rim portion and a substantially open center portion. The rim portion has a partially hollow core in which a stationary field coil is supported. Current to the field coil generates magnetic flux that circulates in a poloidal flux path in the rim, crossing a single magnetic air gap formed by the rim. Protrusions in the rim located around the circumference form poles all having the same polarity. As the rotor rotates, the flux exiting the poles passes through multiple stationary armature windings around the circumference that are located in the single air gap. An AC voltage is induced in the armature windings from rotation.
Owner:REVOLUTION ELECTRIC MOTOR

High frequency switch circuit

A high-frequency switch circuit has a plurality of high-frequency switches for passing and blocking a high-frequency signal between an input terminal and an output terminal depending on a control potential applied as a control signal, a high-frequency detecting terminal for detecting high-frequency signal passing through the high-frequency switch which is in ON-state, and a voltage boosting circuit for generating a potential for increasing the control potential applied to the high-frequency switch which is in ON-state in order to increase difference between the control potential applied to the high-frequency switch which is in an ON-state and the control potential applied to the high-frequency switch which is in an OFF-state, depending on an intensity or amplitude of the detected high-frequency signal.
Owner:NEC CORP

Amplifier linearizer

The present invention provides an advanced adaptive predistortion linearization technique to dramatically reduce nonlinear distortion in power amplifiers over a very wide instantaneous bandwidth (up to 2 GHz) and over a wide range of amplifier types, input frequencies, signal types, amplitudes, temperature, and other environmental and signal conditions. In an embodiment of the invention, the predistortion linearization circuitry comprises (1) a higher-order polynomial model of an amplifier's gain and phase characteristics—higher than a third-order polynomial model; (2) an adaptive calibration technique; and (3) a heuristic calibration technique. The higher-order polynomial model is generated by introducing, for example, a plurality of multi-tone test signals with varying center frequency and spacing into the power amplifier. From the power amplifier's corresponding output, the nonlinearities are modeled by employing a higher-order curve fit to capture the irregularities in the nonlinear transfer function. Different distortion transfer functions can be implemented for different operating conditions. The adaptive calibration technique is based on a feedback analysis technique, which updates the applicable distortion transfer function by analyzing the error signal between the introduced input signal and the output signal in real-time. The heuristic calibration technique implements different distortion transfer functions based on historical operating conditions and optimal configurations of the power amplifier.
Owner:TM IP HLDG LLC

Organic transistor

An organic transistor is capable of emitting light at high luminescence efficiency, operating at high speed, handling large electric power, and can be manufactured at low cost. The organic transistor includes an organic semiconductor layer between a source electrode and a drain electrode, and gate electrodes shaped like a comb or a mesh, which are provided at intervals approximately in the central part of the organic semiconductor layer approximately parallel to the source electrode and the drain electrode. The organic semiconductor layer consists of an electric field luminescent organic semiconductor material such as compounds of naphthalene, anthracene, tetracene, pentacene, hexacene, a phthalocyanine system compound, an azo system compound, a perylene system compound, a triphenylmethane compound, a stilbene compound, poly N-vinyl carbazole, and poly vinyl pyrene.
Owner:RICOH KK

Linearizer

The present invention is an improved linearizer that implements more complex transfer functions to provide the necessary linearization performance with a reasonable amount of signal processing resources. Particularly, the linearizer operates on an analog-to-digital converter and comprises a distortion compensator and one or more factored Volterra compensators, which may include a second-order factored Volterra compensator, a third-order factored Volterra compensator, and additional higher-order factored Volterra compensators. Inclusion of factored Volterra distortion compensators improves linearization processing performance while significantly reducing the computational complexity compared to a traditional Volterra-based compensator.
Owner:LINEARITY LLC

Elevator with transverse flux drive

An elevator, particularly for transporting passengers, has an elevator car guided in an elevator shaft a direct drive motor. The drive motor includes an active primary part at the elevator car and a passive secondary part that is fixed in the elevator shaft and is spaced from the primary part by an air gap. In order to achieve a high power capability, the drive motor is configured as a transverse flux motor that moves the primary part linearly relative to the secondary part under the influence of an electromagnetic propulsive force. The secondary part has at least one rail made of a soft magnetic material and subdivided into a plurality of segments having a predetermined length. The segments are fixed to a wall of the elevator shaft by intermediate elements.
Owner:INVENTIO AG

Core-shell structured carbon for cathode material of lithium ion battery and preparation method thereof

InactiveCN101969122AImprove energy density and power densityGood coulombic efficiencyCell electrodesSecondary cellsLithium electrodeLarge capacity
The invention relates to the technical field of lithium ion batteries, in particular to core-shell structured carbon for a cathode material of a lithium ion battery and a preparation method thereof, and the lithium ion battery taking the core-shell structured carbon as the cathode material and a preparation method thereof. The core-shell structured carbon comprises a hard carbon material serving as a 'core' and soft carbon 'shell' which is coated on the surface of the 'core'. On the one hand, the hard carbon material serving as the 'core' provides a large number of spaces for storing lithium and channels for lithium ions to move, and the energy density and power density of the material are improved, and on the other hand, the soft carbon 'shell' with a graphite structure ensures that the material has high coulombic efficiency and cycle performance, so that the lithium ion battery made of the core-shell structured carbon serving as the cathode material has high capacity, high power characteristic, high cycle performance and high first charge and discharge coulombic efficiency, the preparation method is simple, and the cost is low.
Owner:DONGGUAN MCNAIR NEW POWER

High power superconductive circuits and method of construction thereof

A high power high temperature superconductive circuit for use in various microwave devices including filters, dielectric resonator filters, multiplexers, transmission lines, delay lines, hybrids and beam-forming networks has thin gold films deposited either on a substrate or on top of the high temperature superconductive film. Alternatively, other metal films can be used or a plurality of dielectric films can be used or a dielectric constant gradient substrate can be used. The use of these materials in a part or parts of a microwave circuit reduces the current density in those parts compared to the level of current density if only high temperature superconductive film is used. This increases the power handling capability of the circuit.
Owner:COM DEV LTD

Molybdenum disulfide/mesoporous carbon composite electrode material as well as preparation method and application thereof

ActiveCN103915630AImprove the utilization rate of electrochemical activityIncrease spacingCell electrodesSecondary cellsChemical reactionThiourea
The invention discloses a molybdenum disulfide / mesoporous carbon composite electrode material as well as a preparation method and application thereof. The preparation method comprises the following steps: preparing an oleic acid molecule intercalation molybdenum disulfide precursor through a hydrothermal reaction by adopting oleic acid and sodium oleate as a structure-directing agent and sodium molybdate and thiourea as a molybdenum source and a sulfur source; introducing dopamine into an interlayer by virtue of a chemical reaction of dopamine and oleic acid molecules; self-polymerizing molybdenum disulfide interlayer dopamine to form poly(dopamine) by adopting a tri-block copolymer, polyoxyethylene-polypropylene oxide-polyxyethylene, as a soft template, and then performing a high-temperature carbonization process to prepare the mesoporous carbon-embedded molybdenum disulfide interlayer nano hybrid material. By embedding mesoporous carbon, not only can the interlayer distance of molybdenum disulfide be increased and the re-accumulation of nano-sheets be effectively prevented, but also the electronic conductivity of molybdenum disulfide can be remarkably improved. An electrochemical test result proves that as a lithium ion battery negative material, the molybdenum disulfide / mesoporous carbon composite electrode material has high specific capacity, excellent rate performance and excellent cycling performance, and can be widely applied to the field of lithium ion batteries.
Owner:EAST CHINA UNIV OF SCI & TECH

Semiconductor packages for enhanced number of terminals, speed and power performance

An integrated circuit device package with a first part (101) having a cavity (104) to mount the chip (105), further I / O terminals (102) on the top surface and terminals (103) on the bottom surface. The chip has contact pads (107a and 107b). The second part (110) of the package has bottom surface terminals (111) aligned with the chip contact pads, and bottom terminals (112) aligned with the terminals (102) of the first package part. The connections are provided by stud bumps between the chip contact pads and terminals (111), and by reflow material between terminals (102) and (112). The connector lines (109a and 109b) in the second package part (110) comprise signal / power and ground layers. The layers are spaced by insulation between, 10 and 50 μm thick, and the connector lines have a width less than three times the insulator thickness.
Owner:TEXAS INSTR INC

Vertically polarized traveling wave antenna apparatus and method

A vertically polarized traveling wave antenna is omnidirectional, bottom-mounted, and bottom-fed. A robust center coax provides a self-supporting mechanical structure. Multiple dipoles are capacitively coupled to the coax in quads, with a first two dipoles placed on opposite sides of the center coax and spaced by a quarter wavelength along the coax from the second two, which couple at right angles to the first two. This matched-layer spacing cancels the reactive components of the impedances of the dipoles. Beam tilt is readily incorporated over a wide range by adjusting layer spacing to add phase taper. All dipoles are oriented parallel to the coax axis, with opposite “hot” (center coupled) dipole elements oriented oppositely to each other. A radiated signal thus has rotating phase, when viewed from above, but is vertically polarized at each azimuth. A lightweight radome, provided for weather protection, is not needed for structural integrity.
Owner:SPX CORP

Apparatus and method for power scanning in mobile communication terminal with dual sim card

An apparatus and method for providing a power scanning in a terminal with two or more Radio Frequency (RF) chips are provided. The method includes selecting one RF chip from the two or more RF chips, performing the power scanning on a full band supported by the selected RF chip by using the selected RF chip, gathering a power scanning result obtained by performing the power scanning, and sharing the power scanning result gathered by using the selected RF chip with an unselected RF chip.
Owner:SAMSUNG ELECTRONICS CO LTD

Carbon-clad spinel lithium titanate material, production method and application thereof

The invention relates to a carbon-clad spinel lithium titanate Li4MxTiyO12 material used as a lithium ion battery cathode material, a production method and an application thereof. The cathode material is spinel type Li4MxTiyO12 or a mono or multiple other metallic element-doped compound Li4MxTiyO12. A synthetic method comprises the following steps: mixing an organic titanium solution and lithium salt liquid to prepare sol; aging the sol to obtain a lithium titanate gel predecessor; calcining the gel predecessor, and being conversed to the spinel lithium titanate material with nano size; or comprises the following steps: dispersing the prepared lithium titanate in a carbon source organic solution, removing the solution, and calcining to obtain the spinel lithium titanate / carbon composite material with nano size. Compared with lithium titanate Li4Ti5O12 prepared by a conventional method, the spinel lithium titanate material has better multiplying power characteristic, when the spinel lithium titanate material is used as a lithium ion battery cathode, the power performance of the cell can be obviously increased.
Owner:SHANGHAI ELECTRICGROUP CORP +1

Silicon-based negative electrode of lithium ion battery and method for preparing silicon-based negative electrode of lithium ion battery

The invention discloses a silicon-based negative electrode of a lithium ion battery and a method for preparing the silicon-based negative electrode of the lithium ion battery. The silicon-based negative electrode is prepared by coating a copper foil with negative electrode slurry. The negative electrode slurry is prepared from, by weight, 15.0-18.0 parts of graphite, 1.0-2.0 parts of nano silicon powder, 0.3-2.5 parts of conductive agent, 1.0-8.0 parts of binding agent, 1.0-1.5 parts of thickening agent and 70.0-80.0 parts of dispersing medium. By adoption of a polystyrene-polybutyl acrylate- polystyrene block polymer binding agent which is extremely high in silicon binding force and capable of providing high elasticity, volume variation of silicon in charging and discharging can be counteracted, and performances of a graphene-based negative electrode of the lithium ion battery are improved. The prepared high-energy-density negative electrode is 514mAh / g in energy density during 0.1C charging and discharging, and the power negative electrode is 349mAh / g in energy density in 2C charging and discharging. The silicon-based negative electrode of the lithium ion battery and the method for preparing the silicon-based negative electrode of the lithium ion battery have the advantages of easiness in raw material acquisition, technical simplicity and environment friendliness.
Owner:ZHEJIANG UNIV

Bi-functional catalyst for alkaline water system metal/air battery and preparation method thereof

The invention discloses a bi-functional catalyst for an alkaline water system metal / air battery and a preparation method thereof. The catalyst is a core-shell structure material formed by coating transition metal simple substance particles by nitrogen doped carbon; the preparation process is: taking transition metal salt and urea as raw materials, obtaining precursors of transition metal simple substance particles through a hydrothermal method, coating nitrogen contained polymers on the surfaces of the precursors through in situ polymerization, and carrying out high-heat treatment to obtain the catalyst. The catalyst is good in stability, has bi-functional catalytic activity (ORR and OER) and has high catalytic activity in alkaline environment; the preparation technology is strong in controllability and easy in repetition and satisfies the industrial production demand.
Owner:CENT SOUTH UNIV

Torque distribution method and device for four-wheel drive system of electric automobile

ActiveCN105460001AImprove power performanceImprove fuel economy and ride comfortControl devicesAutomotive engineeringFour-wheel drive
The invention discloses a torque distribution method for a four-wheel drive system of an electric automobile. The method includes the steps of collecting operation state parameters of the electric automobile, judging operation working conditions of the electric automobile according to the operation state parameters of the electric automobile, obtaining whole state information of the electric automobile, and distributing the torque of the four-wheel drive system according to the operation working conditions and the whole state information of the electric automobile. By means of the torque distribution method for the four-wheel drive system of the electric automobile, the torque of the four-wheel drive system can be automatically distributed, and the torque of one wheel can be independently controlled; the method is convenient and flexible, the power property of the electric automobile is effectively improved, fuel consumption economy and driving comfort of the electric automobile are greatly improved, and safety is high. The invention further discloses a torque distribution device for the four-wheel drive system of the electric automobile.
Owner:BYD CO LTD

Switching power supply circuit

A switching power supply circuit uses a magnetic material that is harder to be magnetically saturated than ferrite as a core of a transformer or a choke coil and suitably protects a switching element. The circuit includes a transformer having a core made of a magnetic material of amorphous metal, a primary-side winding and a secondary-side winding. The circuit further includes a switching element for flowing current through the primary-side winding of the transformer according to a pulsive drive signal, and a primary-side current detection circuit for detecting the current flowing through the primary-side winding. The circuit further includes plural circuit elements for rectifying and smoothing a voltage generated in the secondary-side winding of the transformer to generate an output voltage, and a control circuit for generating the drive signal based on at least a detection result of the primary-side current detection circuit, and limiting a period for flowing the current in the primary-side winding.
Owner:OKI POWER TECH

Semiconductor Power Switch

A semiconductor power switch comprises at least a first IGBT and a second IGBT. The collectors of the first and second IGBTs are connected to each other, and the emitters of the first and second IGBTs are connected to each other. The first IGBT is an IGBT type with a comparatively low collector-emitter on-voltage and a comparatively high turn-on or turn-off switching energy. In contrast thereto, the second IGBT is an IGBT type with a comparatively high collector-emitter on-voltage and a comparatively low turn-on or turn-off switching energy. Both IGBTs receive gate signals from a control circuit for switching the power switch on during a first time interval and switching the power switch off during a second time interval. The control circuit is designed to supply an on-signal to the second IGBT during the whole first time interval and another on-signal to the first IGBT during only a part of the first time interval, which is less than the whole.
Owner:SCHLEIFRING & APPBAU
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products