Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1431 results about "Nitrogen doping" patented technology

Doping of pristine materials can change their chemical and electrical properties. Namely nitrogen doping of graphene results in modulation of electronic properties of graphene.

Preparation method of nitrogen-doped porous-structure carbon material

The invention discloses a preparation method of a nitrogen-doped porous-structure carbon material and belongs to the technical field of inorganic material preparation. The preparation method utilizes a micromolecular carbon-containing compound as a raw material and comprises the following steps of based on the weight of the raw material, adding 0-400wt% of an inorganic base, 0-400wt% of an organic nitrogen-containing compound and 0-50wt% of a metal or metal oxide or inorganic metal salt into the raw material, carrying out uniform dispersion, and carrying out a reaction process in an inert gas protective atmosphere at a temperature of 400-900 DEG C for 0.5-12h so that the nitrogen-doped porous-structure carbon material having micropores, mesopores and macropores is obtained. The preparation method has simple processes, can be controlled easily, and realizes one-step combination of porous structure, functionalization nitrogen doping and metal particle modification. The nitrogen-doped porous-structure carbon material having high nitrogen content has a large capacitance value and good cycle performances, can be used as an oxygen reduction reaction catalyst having high activity, high selectivity and high stability and has a very large application prospect.
Owner:BEIJING UNIV OF CHEM TECH

Controllable synthesis method of N-doped graphitized carbon ball with hollow structures

InactiveCN103183341AWith mesoporous carbon support structureLow priceMaterial nanotechnologyCarbon compoundsSynthesis methodsHydrothermal synthesis
The invention discloses a controllable synthesizing method of an N-doped graphitized carbon ball with hollow structures. The method comprises the following steps: (1) dissolving silicon source, soluble metal salt and a catalyst to the solvent according to the molar ratio, transferring the solvent to the thermal water kettle to conduct hydro-thermal synthesis after being stirred until being thoroughly dissolved, and cleaning, filtering and drying the sediment to obtain a primary commodity; (2) reducing the primary commodity at high temperature under the protection of gas in a high-temperature reaction furnace; and (3) soaking the product obtained by high-temperature reducing in acidic solution, and obtaining the graphitized carbon ball nitrogen doping with the hollow structure after cleaning, filtering and drying. The graphitized carbon ball with the hollow structures provided by the invention has the advantages that the carbon sphere has a uniform appearance, the carbon shell has millipore structures, a mesoporous carbon support structure is formed inside the carbon sphere and a better graphitize degree is provided, and can be used in the field of high-efficient catalyzing and transforming, energy storage and transforming, medicine releasing, substance adsorptive separation and the like. The non-template hydrothermal synthesis technique provided by the invention is simple and controllable, and can be used in large scale production.
Owner:CHINA UNIV OF MINING & TECH +1

Nitrogen-doped high-luminescent carbon quantum dot and preparation method thereof

The invention provides a nitrogen-doped high-luminescent carbon quantum dot and a preparation method thereof. The preparation method comprises the following steps: reacting by using a sodium citrate solution as a carbon source and ethanediamine as a source of N under a sealing condition, cooling an obtained product, then separating, and drying a solution obtained after separation so as to obtain the nitrogen-doped high-luminescent carbon quantum dot. The preparation method is simple in process, short in preparation period, low in manufacturing cost and good in repeatability; obtained raw materials are simple and easily available. The nitrogen-doped high-luminescent carbon quantum dot prepared by using the method is uniform in size distribution and high in luminescent density; the luminescent density of the nitrogen-doped high-luminescent carbon quantum dot is about 20 times of that of a general quantum dot, so that the application of the nitrogen-doped high-luminescent carbon quantum dot in the field of cell marking can be expanded. As the improvement of the luminescent density is caused by nitrogen doping, the nitrogen-doped high-luminescent carbon quantum dot prepared by the method has unique application when being used for detecting whether N exists in environments.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material for cathode of lithium sulfur battery, as well as preparation method and application of graphene-based nitrogen-doped hierachical-pore carbon nanosheet/sulfur composite material

The invention discloses a graphene-based nitrogen-doped hierachical-pore carbon nanosheet / sulfur composite material for a cathode of a lithium sulfur battery, as well as a preparation method and application of the graphene-based nitrogen-doped hierachical-pore carbon nanosheet / sulfur composite material. The carbon nanosheet is a graphene-based nitrogen-doped hierachical-pore carbon nanosheet, and is prepared by the steps of growing poly-pyrrole on graphene oxide in situ, performing carbonization at high temperature, activating by using potassium hydroxide and forming pores, wherein the graphene oxide and nano-silicon dioxide serve as double templates; the thickness of the carbon nanosheet is 10 to 25 nm; the specific surface area is 800 to 1,600 m<2> / g; the pore diameter of the carbon nanosheet is distributed into the range of 0.8 to 6 nm in a concentrated way; the structure of the carbon nanosheet is a sandwich-like type which adopts graphene as the interlayer of the carbon nanosheet. The carbon nanosheet with abundant micro-pores, meso-pores and large specific surface area can load more sulfur active substances and can effectively inhibit dissolution of polysulfide. The ultrathin nanosheet, and the micro-pores and meso-pores guarantee diffusion of electrolyte and transmission of ions. According to the structure, the capacity, the cycling stability, the coulombic efficiency and the rate performance of the carbon nanosheet / sulfur composition material applied to the lithium sulfur battery are improved synergistically.
Owner:WENZHOU UNIVERSITY

Method for preparing nitrogen-doped graphene with high nitrogen doping amount

The invention discloses a method for preparing nitrogen-doped graphene with high nitrogen doping amount. The method comprises the following steps: (1) dispersing of graphene; (2) ultrasonic dispersion; (3) microwave heating; and (4) filtering and drying. The nitrogen doping amount of the nitrogen-doped graphene prepared by the method disclosed by the invention is 10%-15.0%, the density of free carriers in graphene is greatly increased by the high nitrogen doping amount, the interaction of graphene and metal is enhanced, no oxidation pretreatment is carried out, no toxic solvent is used in the reaction process, reactants are simple in component, reaction conditions are mild, and the prepared nitrogen-doped graphene has excellent electrochemical property and can be used for preparation of new energy materials such as lithium ion battery, lithium-air battery, super capacitor electrode material and fuel cell oxygen reduction catalysts. According to the method disclosed by the invention, a high-pressure kettle is heated by using microwaves without high temperature; the method is low in energy consumption, is carried out in an airtight environment and therefore hardly causes environment pollution; in addition, the method is simple in process and convenient to operate and needs less production equipment, thus, the cost is further reduced.
Owner:FUJIAN XFH NEW ENERGY MATERIALS CO LTD

Preparation method of nitrogen-doped zinc oxide film

The invention relates to the technical field of zinc oxide preparation, and in particular relates to a preparation method of a nitrogen-doped zinc oxide film. The preparation method comprises: placing a silicon substrate in the reaction cavity of atomic layer deposition (ALD) equipment; introducing gas containing a zinc source into the reaction cavity of the ALD equipment, wherein the zinc atoms in the gas containing the zinc source are adsorbed to the silicon substrate; conveying hydrogen to the reaction cavity of the ALD equipment based on nitrogen as a carrier gas, and simultaneously carrying out plasma discharge; introducing an oxygen-containing source to the reaction cavity of the ALD equipment, wherein the zinc atoms which do not react with nitrogen atoms form zinc-oxygen bonds withthe oxygen atoms in the oxygen-containing source; and repeating the steps, so as to grow the zinc oxide film containing the nitrogen atoms layer by layer. In the preparation method provided by the invention, nitrogen doping is carried out on the zinc oxide film by utilizing the ALD equipment; the method is simple and practicable; by utilizing the characteristic of atomic layer deposition and single-layer cycle growth, the uniform nitrogen doping in the whole film structure can be achieved in the process of zinc oxide film growth so that the doped film is complete in structure and excellent inproperty.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI

Method for preparing nitrogen-doped carbonaceous material by modifying polymer

The invention discloses a method for preparing a nitrogen-doped carbonaceous material by modifying polymer, which can be used for preparing the nitrogen-doped carbonaceous material with the nitrogen doping amount of 5 to 26 at%. The method disclosed by the invention is characterized by comprising the following steps of: selecting a nitrogen-containing organic compound as a nitrogen precursor and utilizing the nitrogen-containing organic compound to perform polymerization reaction on a carbonaceous material to form a compound of the nitrogen-containing polymer and carbonaceous material; and then carrying out heat treatment on the polymer/carbonaceous material compound in the inert atmosphere to carbonize nitrogen-containing polymer in the compound so as to implement the nitrogen doping on the carbonaceous material and prepare the nitrogen-doped carbonaceous material. According to the invention, when the carbonaceous material is subjected to effective nitrogen doping, the original intrinsic structure of the carbonaceous material can be ensured; moreover, the nitrogen-doped carbonaceous material with the nitrogen content of 5 to 26 at% can be prepared; the specific capacity of using a carbon material as an electrode material of a supercapacitor is obviously improved; and the method has the characteristics of simple technical process and wide applicability.
Owner:UNIV OF SCI & TECH LIAONING

Sulfur-carbon composite material with nitrogen-doped porous carbon nanofiber net-shaped structure, as well as preparation method and application of composite material

The invention belongs to the technical field of lithium sulfur batteries, specifically relates to a sulfur-carbon composite material with a nitrogen-doped porous carbon nanofiber net-shaped structure, as well as a preparation method and an application of the composite material. By taking a polypyrrole net-shaped structure which is synthesized by virtue of a soft template method as a raw material, taking the potassium hydroxide as a pore forming agent, and taking the nitrogen-doped carbon nanofiber net-shaped structure which is synthesized through high-temperature carbonization under nitrogen atmosphere and is in a porous structure as a precursor, the sulphur-carbon composite material which can be used as the anode of the lithium sulfur battery can be prepared through heat treatment with elemental sulfur. The preparation method provided by the invention is simple, and good in reproducibility, and the prepared composite material is uniform in structure distribution, and can be used as the anode of the lithium sulfur battery. Due to the nitrogen doping and the tridimensional net-shaped structure, for the material, the conductivity can be improved, a transmission path of lithium ions is shortened, meanwhile, the dissolving of the sulfur and intermediate product in an electrolyte can be prevented, the electrochemistry performance of a positive material of the lithium sulfur battery is improved, good specific discharge capacity, cycle performance and rate performance can be achieved.
Owner:FUDAN UNIV

Research of surface-modified nitrogen-doped porous carbon-sulfur composite material in positive electrode of lithium-sulfur battery

The invention provides a research of a surface-modified nitrogen-doped porous carbon-sulfur composite material in a positive electrode of a lithium-sulfur battery. The nitrogen-doped porous carbon material is prepared by a hard template method and an ammonia activation method; the carbon material is mixed with sublimed sulfur powder evenly; the mixture is heated to synthesize the carbon-sulfur composite material in an airtight condition; and a film is formed by polymerizing dopamine on the porous carbon surface and then is chemically crosslinked with graphene oxide to obtain the surface-modified nitrogen-doped porous carbon-sulfur composite material. The surface of the composite material is evenly coated with polydopamine and the graphene oxide; and a nitrogen-containing functional group in the polydopamine and an oxygen-containing functional group in the graphene oxide can well fix sulfur and inhibit shuttling of polysulphide. Furthermore, a similar shell structure is formed on the surface of the carbon material through the chemical crosslinking action of the polydopamine and the graphene oxide to stabilize the material structure, so that the composite material with good performance for the positive electrode of the lithium-sulfur battery is obtained.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Nitrogen-doped carbon nanometer particle as well as preparation method and application thereof

InactiveCN103113886AOvercoming the technical problem of easy fluorescence quenchingEasy to prepareNon-macromolecular adhesive additivesInksMicrowave methodSolvent
The invention discloses a nitrogen-doped carbon nanometer particle as well as a preparation method and application thereof, belongs to the field of nanometer material science and is used for solving the technical problems that fluorescence quenching is easily caused to the aggregative state of the carbon nanometer particle due to surface passivation modifier which is added for the preparation of existing carbon nanometer particles. The nitrogen-doped carbon nanometer particle is prepared through a microwave method by using organic compounds containing polycarboxyl or polyhydroxy as materials and using ammonia water as a solvent and a nitrogen doping source. The invention further provides the application of the nitrogen-doped carbon nanometer particle as fluorescent ink and fluorescent glue. The preparation method disclosed by the invention is simple, low in cost, and convenient to realize large-scale production; the maximal fluorescent quantum efficiency of the solid film formed by the prepared fluorescent glue is as high as 84%; the prepared fluorescent ink is non-toxic, generates no precipitates after being placed for a long time, is strong in fluorescence characteristic and can be applied to various fields such as bio-imaging, biological product identification, information storage, information encryption, counterfeiting prevention, illumination and display, sensing and photovoltaic devices.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Sulfur-doped carbon material or sulfur-nitrogen-doped carbon material and preparation method and application thereof

The invention discloses a sulfur-doped carbon material or a sulfur-nitrogen-doped carbon material. The sulfur-doped carbon material is formed by doping sulfur into a carbon material, or the sulfur-nitrogen-doped carbon material is formed by doping the sulfur and nitrogen into the carbon material, wherein the carbon material is carbon black. The material can be used as or in an electrode material for manufacturing a battery and has excellent electrochemical performance. The invention further discloses a preparation method of the sulfur-doped carbon material or the sulfur-nitrogen-doped carbon material, and the preparation method comprises the following steps of: evenly mixing a sulfur doping raw material or the sulfur doping raw material and a nitrogen doping raw material with the carbon material, to form a mixture, then, pouring the mixture into water to form a uniformly-dispersed suspension; and drying the suspension to obtain a substance, grinding the substance, and then, calcining the substance in an inert gas atmosphere to obtain the sulfur-doped carbon material or the sulfur-nitrogen-doped carbon material. The preparation method is simple in operation and easy in mass production.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Three-dimensional anode material for hydrogen production by water electrolysis and preparation method of three-dimensional anode material

The invention provides a novel three-dimensional anode material for hydrogen production by water electrolysis. The novel three-dimensional anode material comprises nickel foam loaded N-doped carbon/transition metal oxide prepared in situ according to a liquid-solid synthesis method as well as a three-dimensional anode piece used for hydrogen production through water electrolysis. A preparation method of the three-dimensional anode material particularly comprises the following steps: (1) immersing clean nickel foam into a mixed solution, containing transition metal salt, a silicon source and a nitrogen source, of water and ethanol, taking out the nickel foam for airing, and repeating for three times; (2) calcining the nickel foam piece obtained in the step (1) for 1-6 h at 600-800 DEG C under the protection of inert gas, and then heating for 1-1.5 h at 200-250 DEG C in the atmosphere of O2, so as to obtain a nickel foam loaded N-doped carbon/transition metal oxide three-dimensional electrode. The three-dimensional electrode produced according to the preparation method has relatively low oxygen evolution overvoltage, has relatively high structural stability and oxygen evolution catalytic activity under long-term alkaline electrolysis condition, is simple in production process and adjustable in electrode component and variety, and has wide application prospects.
Owner:TAIYUAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products