Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2635 results about "Mass transfer" patented technology

Mass transfer is the net movement of mass from one location, usually meaning stream, phase, fraction or component, to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems.

Controlled electroporation and mass transfer across cell membranes

Electroporation is performed in a controlled manner in either individual or multiple biological cells or biological tissue by monitoring the electrical impedance, defined herein as the ratio of current to voltage in the electroporation cell. The impedance detects the onset of electroporation in the biological cell(s), and this information is used to control the intensity and duration of the voltage to assure that electroporation has occurred without destroying the cell(s). This is applicable to electroporation in general. In addition, a particular method and apparatus are disclosed in which electroporation and/or mass transfer across a cell membrane are accomplished by securing a cell across an opening in a barrier between two chambers such that the cell closes the opening. The barrier is either electrically insulating, impermeable to the solute, or both, depending on whether pore formation, diffusive transport of the solute across the membrane, or both are sought. Electroporation is achieved by applying a voltage between the two chambers, and diffusive transport is achieved either by a difference in solute concentration between the liquids surrounding the cell and the cell interior or by a differential in concentration between the two chambers themselves. Electric current and diffusive transport are restricted to a flow path that passes through the opening.

Smoke-free substitute cigarette product

ActiveUS20100126505A1Straightforwardly be carriedReduce weightTobacco treatmentTobacco devicesFlammable gasCigarillo
A method for volatilising active and/or aroma substances for the purpose of releasing an inhalable aerosol, wherein combustion gases of a flammable gas, which is preferably combusted with an excess of air, are passed partially or entirely, optionally mixed with ambient air, through an active and/or aroma substance depot and wherein a desired temperature is selectable by the proportion of combustion gases and optionally by the mixing ratio of said combustion gases with ambient air and the device implementing the method in the shape and dimensions of a cigarette or cigar for releasing an inhalable aerosol, comprising a mouthpiece (3) containing an active and/or aroma substance depot (32), a heating member (2) with a housing sleeve with one or more air inlets and one or more hot air outlets at the mouthpiece end, a filling valve (21) for filling a gas tank (22) with a flammable gas, preferably propane or butane gas, a regulating valve (24) for the controlled release of the gas from the gas tank (22) to a burner (25) and a mass transfer exchanger (26) for heating the air by the hot combustion gases produced by means of the burner (24), wherein the mouthpiece (3) is detachably connected to the heating member (2) and control of the regulating valve (24) is effected by means of the reduced pressure and/or stream of air generated by a user's suction on the mouthpiece (3). Fuelling station for such a device.

Apparatus for the purification of water and method therefor

An apparatus and method for the purification of contaminated water whereby the contamination level of the wastewater is automatically monitored and treatment self-adjusted and continued until the desired level of purification is reached. Specifically, if upon treatment a pre-set purification level is not obtained a water recycle control means completely precludes the uptake of additional contaminated water and recycles wastewater within the apparatus until the desired level of purification is obtained. The present invention more particularly pertains to an efficient, turn key, economical, movable, automatic and compact apparatus and method for treating a fluid with ozone comprising multiple pressurized contact columns which are arranged in a hybrid parallel and series column configuration, which utilizes a unique water recycle control system and piping arrangement to improve the efficiency of the mass transfer of ozone into the water and increase its solubility by increasing the contact time between the water phase and the gas phase. The apparatus and method of the present invention has the further advantage that it requires minimal installation and may be used to fulfill the clean and safe water needs of any hotel, resort, restaurant, hospital, light industry, commercial business, apartment complex or small city.

Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound

The current invention, Supercritical Antisolvent Precipitation with Enhanced Mass Transfer (SAS-EM) provides a significantly improved method for the production of nano and micro-particles with a narrow size distribution. The processes of the invention utilize the properties of supercritical fluids and also the principles of virbrational atomization to provide an efficient technique for the effective nanonization or micronization of particles. Like the SAS technique, SAS-EM, also uses a supercritical fluid as the antisolvent, but in the present invention the dispersion jet is deflected by a vibrating surface that atomizes the jet into fine droplets. The vibrating surface also generates a vibrational flow field within the supercritical phase that enhances mass transfer through increased mixing. Sizes of the particles obtained by this technique are easily controlled by changing the vibration intensity of the deflecting surface, which in turn is controlled by adjusting the power input to the vibration source. A major advantage of the SAS-EM technique is that it can be successfully used to obtain nanoparticles of materials that usually yield fibers or large crystals in SAS method. Microencapsulation via coprecipitation of two or more materials can also be achieved using the SAS-EM technique.

Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas

The present application is directed to a continuous contacting apparatus for separating a liquid component from a liquid mixture. The apparatus comprises: (i) an evaporation chamber (15) having first and second ends, an inlet (50) and an outlet (55) for a carrier gas, and an inlet (30) and an outlet (40) for a liquid mixture, wherein the inlet (30) for the liquid mixture and the outlet (55) of the carrier gas are located on the first end of the evaporation chamber (15); (ii) a dew-formation chamber (20) having an inlet (60) and an outlet (65) for a carrier gas and an outlet for the separable liquid component (80), wherein the inlet for the carrier gas (60) of the dew-formation chamber (20) is situated in a countercurrent manner to the inlet for the carrier gas of the evaporation chamber; (iii) a common heat transfer wall (10) providing thermal communication between the evaporation chamber (15) and the dew-formation chamber (20); (iv) a feeding device for providing the liquid mixture onto the evaporation side of the heat transfer wall; (v) an air mover for controlling a flow of a carrier gas through the chambers, wherein the gas flow in the evaporation chamber is countercurrent to the gas flow in the dew-formation chamber; and (vi) a heating apparatus for heating the carrier gas from the outlet of the evaporation chamber, wherein the heated carrier gas is directed to flow into the inlet of the dew-formation chamber. Also described is a process for separating a liquid component from a liquid mixture in a continuous contacting manner comprising employing such an apparatus for such separation.

Super macroporous polymer microspheres and preparation method thereof

The invention provides super macroporous polymer microspheres and a preparation method thereof. The preparation method comprises the following steps of: firstly, preparing an oil-in-water in-water composite emulsion as a template for super macroporous microspheres through a two-step emulsion process; then, solidifying an oil phase by using a solvent removal method to form super macroporous microspheres provided with inner-outer through pore passages; and finally, after molding the microspheres, further crosslinking microsphere skeleton molecules to obtain microspheres with rigid resin structures. The microspheres prepared by the method have a through pore passage structure, the controllable particle size range is 0.1-300 microns, the controllable pore size range is 0.09-90 microns, and the controllable porosity range is 10-90%. Super macroporous structures are beneficial for biological macromolecules to penetrate through and enter the microspheres, the mass transfer by convection in the microspheres can be realized, and the rigid structure can tolerate higher pressure and higher flow velocity. The super macroporous polymer microspheres can be used as stationary phase fillers for chromatographic separation, immobilized carriers of enzymes, cell culture micro-carriers, tissue engineering micro scaffold materials, adsorbing materials and the like.

Fuel cell ordered porous nano-fiber single electrode, membrane electrode and preparation method

The invention discloses a fuel cell ordered porous nano-fiber single electrode, a membrane electrode and a preparation method. Polymer nano-fibers are deposited on one side of a gaseous diffusion material through an electro-spinning technology; metal nanoparticles with catalytic activity are deposited on the surfaces of the polymer nano-fibers by using magnetron sputtering and vacuum evaporation methods, or catalyst slurry is directly sprayed to one side of a nano-fiber thin film to form a porous single electrode; then two single electrodes and a layer of proton exchange membrane are combined into a three-in-one membrane electrode. The fuel cell ordered porous nano-fiber single electrode, the membrane electrode and the preparation method have the beneficial effects that the conventional micro-porous layer is substituted by the nano-fiber layer with high porosity and high specific surface area, prepared by electro-spinning, so that the catalytic activity area is increased and the three-phase reaction interface and the mass transfer are facilitated, and an active metal catalytic layer formed by magnetron sputtering and vacuum evaporation has high adhesion, is uniform in coating and has controllable thickness, so that the using amount of the active metal catalyst is reduced and the utilization rate of the catalyst is also greatly increased.

Preparation method of mesoporous-containing Y-shaped molecular sieve

The invention relates to a preparation method of a mesoporous-containing Y-shaped molecular sieve, and relates to a preparation method of a Y-shaped molecular sieve. The preparation method aims to solve the problems of small pore diameter and pore volume of the Y-shaped molecular sieve prepared through the traditional method. The preparation method comprises the following steps of: 1, preparing a sodium type Y-shaped molecular sieve; 2, preparing an ammonium type Y-shaped molecular sieve; 3, processing through an organic acid water solution; 4, processing through NaOH; and 5, processing through an ammonium nitrate water solution so as to obtain the mesoporous-containing Y-shaped molecular sieve. The mesoporous-containing Y-shaped molecular sieve is synthesized through a simple and effective method under a moderate condition, contains abundant mesoporous, is unchanged in microporosity, achieves the volume of the mesoporous at 0.5-1.5 mL/g, greatly promotes the macromolecule to approach a catalytic active center and is favorable for reaction mass transfer through more concentrated pore diameter distribution, has the advantages of adjustable ratio of silicon and aluminum contained in a framework and good hydrothermal stability and can be used as a catalyst carrier or directly used as a catalyst. The preparation method disclosed by the invention can be used for preparing the mesoporous-containing Y-shaped molecular sieve.

Method of adjusting the working range of a multi-analyte assay

InactiveUS20060177873A1Reduce available analyte concentrationHinder availabilityBiological testingSpecial data processing applicationsHigh concentrationMulti analyte
The invention features a method of adjusting the concentration of at least one but not all of a plurality of analytes in a fluid sample to match a known working range of detection of an analyte assay system, where each of the plurality of analytes may or may not be present within an expected initial concentration range having a high end and a low end, and at least one analyte has a high end expected concentration range that exceeds the high end of the working range of the assay system. The expected concentration of the high concentration analyte is adjusted by a proportional scaling constant, α, so that the high end of the adjusted expected concentration range is less than or equal to the high end of the working range, without adjusting the expected concentration range of at least one other of the plurality of analytes. Adjustment is preferably accomplished by adding to the solution phase of the assay one or more scaling agents, each scaling agent binding with specificity to an analyte and thereby preventing it from being detected by the assay system, e.g., by competing with binding to immobilized capture agent. This scaling method contrasts with prior methods, in which a concentration of available analyte is offset by a fixed amount to adjust the detectable threshold of the assay. Here, the amount of scaling agent is proportional to a scaling coefficient, and the scaling agent is present in the solution phase of the assay at high concentrations relative to analyte. Due to the equilibrium conditions established by the laws of mass transfer, the amount of free analyte remaining in solution in the presence of scaling agent is predictable and finite, and can be measured as a quantitative indicator of the initial concentration of the analyte in the sample.

Gas diffusion layer with gradient hole structure and preparation and applications thereof

The invention relates to a gas diffusion layer with a gradient hole structure for fuel batteries and a preparation method and applications thereof. The gas diffusion layer consists of a macroporous carbon-based support body and a micro-porous layer which are overlapped, wherein the material of the micro-porous layer is embedded in the macroporous carbon-based support body from one side, far from the flow field of a battery, of the macroporous carbon-based support body to form a transitional hole layer; the transitional hole layer is composed of the material of the micro-porous layer and the fiber of the macroporous carbon-based support body and is obtained by embedding the material of the micro-porous layer in the side, far from the flow field of a battery, of the macroporous carbon-based support body; and the curvature of reaction gas transfer from the side next to the flow field to the side next to a catalyst layer in the gas diffusion layer increases gradiently and the air permeability gradually reduces from 4-10s/100ml to 100-900s/100ml. By adopting the gas diffusion layer with the structure, the mass transfer curvatures of water and the gas in the gas diffusion layer (GDL) can be effectively increased, the transfer path of the product-water can be prolonged and liquid water in the battery can be maintained; and the gas diffusion layer is particularly suitable for fuel batteries working under low humidity and the cathodes of alkaline fuel batteries.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products