Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6081 results about "Mass transfer" patented technology

Mass transfer is the net movement of mass from one location, usually meaning stream, phase, fraction or component, to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems.

Controlled electroporation and mass transfer across cell membranes

Electroporation is performed in a controlled manner in either individual or multiple biological cells or biological tissue by monitoring the electrical impedance, defined herein as the ratio of current to voltage in the electroporation cell. The impedance detects the onset of electroporation in the biological cell(s), and this information is used to control the intensity and duration of the voltage to assure that electroporation has occurred without destroying the cell(s). This is applicable to electroporation in general. In addition, a particular method and apparatus are disclosed in which electroporation and / or mass transfer across a cell membrane are accomplished by securing a cell across an opening in a barrier between two chambers such that the cell closes the opening. The barrier is either electrically insulating, impermeable to the solute, or both, depending on whether pore formation, diffusive transport of the solute across the membrane, or both are sought. Electroporation is achieved by applying a voltage between the two chambers, and diffusive transport is achieved either by a difference in solute concentration between the liquids surrounding the cell and the cell interior or by a differential in concentration between the two chambers themselves. Electric current and diffusive transport are restricted to a flow path that passes through the opening.
Owner:RGT UNIV OF CALIFORNIA

Controlled electroporation and mass transfer across cell membranes

Electroporation is performed in a controlled manner in either individual or multiple biological cells or biological tissue by monitoring the electrical impedance, defined herein as the ratio of current to voltage in the electroporation cell. The impedance detects the onset of electroporation in the biological cell(s), and this information is used to control the intensity and duration of the voltage to assure that electroporation has occurred without destroying the cell(s). This is applicable to electroporation in general. In addition, a particular method and apparatus are disclosed in which electroporation and/or mass transfer across a cell membrane are accomplished by securing a cell across an opening in a barrier between two chambers such that the cell closes the opening. The barrier is either electrically insulating, impermeable to the solute, or both, depending on whether pore formation, diffusive transport of the solute across the membrane, or both are sought. Electroporation is achieved by applying a voltage between the two chambers, and diffusive transport is achieved either by a difference in solute concentration between the liquids surrounding the cell and the cell interior or by a differential in concentration between the two chambers themselves. Electric current and diffusive transport are restricted to a flow path that passes through the opening.
Owner:RGT UNIV OF CALIFORNIA

Smoke-free substitute cigarette product

ActiveUS20100126505A1Straightforwardly be carriedReduce weightTobacco treatmentTobacco devicesFlammable gasCigarillo
A method for volatilising active and/or aroma substances for the purpose of releasing an inhalable aerosol, wherein combustion gases of a flammable gas, which is preferably combusted with an excess of air, are passed partially or entirely, optionally mixed with ambient air, through an active and/or aroma substance depot and wherein a desired temperature is selectable by the proportion of combustion gases and optionally by the mixing ratio of said combustion gases with ambient air and the device implementing the method in the shape and dimensions of a cigarette or cigar for releasing an inhalable aerosol, comprising a mouthpiece (3) containing an active and/or aroma substance depot (32), a heating member (2) with a housing sleeve with one or more air inlets and one or more hot air outlets at the mouthpiece end, a filling valve (21) for filling a gas tank (22) with a flammable gas, preferably propane or butane gas, a regulating valve (24) for the controlled release of the gas from the gas tank (22) to a burner (25) and a mass transfer exchanger (26) for heating the air by the hot combustion gases produced by means of the burner (24), wherein the mouthpiece (3) is detachably connected to the heating member (2) and control of the regulating valve (24) is effected by means of the reduced pressure and/or stream of air generated by a user's suction on the mouthpiece (3). Fuelling station for such a device.
Owner:PHILIP MORRIS PROD SA

Apparatus for the purification of water and method therefor

An apparatus and method for the purification of contaminated water whereby the contamination level of the wastewater is automatically monitored and treatment self-adjusted and continued until the desired level of purification is reached. Specifically, if upon treatment a pre-set purification level is not obtained a water recycle control means completely precludes the uptake of additional contaminated water and recycles wastewater within the apparatus until the desired level of purification is obtained. The present invention more particularly pertains to an efficient, turn key, economical, movable, automatic and compact apparatus and method for treating a fluid with ozone comprising multiple pressurized contact columns which are arranged in a hybrid parallel and series column configuration, which utilizes a unique water recycle control system and piping arrangement to improve the efficiency of the mass transfer of ozone into the water and increase its solubility by increasing the contact time between the water phase and the gas phase. The apparatus and method of the present invention has the further advantage that it requires minimal installation and may be used to fulfill the clean and safe water needs of any hotel, resort, restaurant, hospital, light industry, commercial business, apartment complex or small city.
Owner:AGRIMOND USA CORP

Method of forming nanoparticles and microparticles of controllable size using supercritical fluids with enhanced mass transfer

The current invention, Supercritical Antisolvent Precipitation with Enhanced Mass Transfer (SAS-EM) provides a significantly improved method for the production of nano and micro-particles with a narrow size distribution. The processes of the invention utilize the properties of supercritical fluids and also the principles of virbrational atomization to provide an efficient technique for the effective nanonization or micronization of particles. Like the SAS technique, SAS-EM, also uses a supercritical fluid as the antisolvent, but in the present invention the dispersion jet is deflected by a vibrating surface that atomizes the jet into fine droplets. The vibrating surface also generates a vibrational flow field within the supercritical phase that enhances mass transfer through increased mixing. Sizes of the particles obtained by this technique are easily controlled by changing the vibration intensity of the deflecting surface, which in turn is controlled by adjusting the power input to the vibration source. A major advantage of the SAS-EM technique is that it can be successfully used to obtain nanoparticles of materials that usually yield fibers or large crystals in SAS method. Microencapsulation via coprecipitation of two or more materials can also be achieved using the SAS-EM technique.
Owner:UNIV AUBURN

Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound

The current invention, Supercritical Antisolvent Precipitation with Enhanced Mass Transfer (SAS-EM) provides a significantly improved method for the production of nano and micro-particles with a narrow size distribution. The processes of the invention utilize the properties of supercritical fluids and also the principles of virbrational atomization to provide an efficient technique for the effective nanonization or micronization of particles. Like the SAS technique, SAS-EM, also uses a supercritical fluid as the antisolvent, but in the present invention the dispersion jet is deflected by a vibrating surface that atomizes the jet into fine droplets. The vibrating surface also generates a vibrational flow field within the supercritical phase that enhances mass transfer through increased mixing. Sizes of the particles obtained by this technique are easily controlled by changing the vibration intensity of the deflecting surface, which in turn is controlled by adjusting the power input to the vibration source. A major advantage of the SAS-EM technique is that it can be successfully used to obtain nanoparticles of materials that usually yield fibers or large crystals in SAS method. Microencapsulation via coprecipitation of two or more materials can also be achieved using the SAS-EM technique.
Owner:UNIV AUBURN

Three-dimensional ordered macroporous alumina and preparation method thereof

The invention provides a three-dimensional ordered macroporous alumina and a preparation method thereof, wherein the method comprises the following steps of: assembling polymer microspheres which are singly dispersed to form a colloidal crystal template, filling the alumina sol which is prepared by means of a special method into the template, and drying and roasting to obtain macroporous alumina. The method provided by the invention has the advantages that the alumina sol and the compounding process of the alumina sol and the polymer microspheres can be controlled well, the network structure of the alumina sol is protected possibly, the alumina which is prepared by means of the method not only has three-dimensional ordered macroporous channels but also has a high specific surface area. Furthermore, the macropores within the material are communicated to the surrounding macropores by means of 12 small window holes, and the window holes are formed by sintering the template properly. The alumina prepared by means of the method provided by the invention is suitable for being used as a catalyst carrier of heavy oil and an adsorption and separation material of organic macromolecule. The alumina prepared by means of the method which is provided by the invention is suitable for improving the mass transfer capability of the material within the catalyst and is suitable for improving the activity and the selectivity of the catalyst during the application process as a catalyst carrier.
Owner:CHINA PETROLEUM & CHEM CORP +1

High-specific-surface-area boron-doped diamond electrode and preparation method and application thereof

The invention discloses a high-specific-surface-area boron-doped diamond (BDD) electrode which comprises an electrode substrate. A boron-doped diamond layer is arranged on the surface of the electrode substrate. Or, a transition layer is arranged on the surface of the substrate, and then a boron-doped diamond layer is arranged on the surface of the transition layer. Metal particles are distributed in the diamond layer, and tiny holes and / or pointed cones are distributed on the surface of the diamond layer. Compared with a traditional plate electrode, the boron-doped diamond electrode contains a large number of tiny holes and pointed cones and has the extremely high specific surface area, and the large current intensity is provided through the low current intensity; and meanwhile, due to the different electrode configurations of the substrate and modification of surface graphene and / or carbon nano tubs (CNT), the mass transfer process can be greatly improved, the current efficiency and the electrochemical property are greatly improved, and the BDD electrode with high electrocatalytic activity and high using efficiency is prepared. The electrode can be widely applied in the fields of electrochemical wastewater purification treatment, electrochemical biosensors, strong oxidant electrochemical synthesis, electrochemical detection and the like.
Owner:NANJING DAIMONTE TECH CO LTD

Method for removing organic matters in water by utilizing three-dimensional electrode electro-fenton and device thereof

The invention relates to a method for carrying out oxidation treatment on organic waste water by utilizing a three-dimensional electrode electro-fenton and a device thereof. The device comprises a reactor shell, a carbon material cathode, an iron plate anode, a three-dimensional particle electrode of a fixed bed, a direct-current voltage-stabilizing power supply, a microporous aeration plate and an air pump, wherein a reactor consists of a reaction chamber and a gas chamber; the carbon material cathode, the iron plate anode and the particle electrode are positioned in the reaction chamber at the upper part of the reactor; and the gas chamber is formed between the bottom of the reactor and the microporous aeration plate. After direct current is introduced, the iron anode is oxidized to generate iron ions, oxygen in the gas chamber is reduced on the surface of the cathode to generate hydrogen peroxide, and the iron ions and the hydrogen peroxide form a fenton reagent to oxidize and remove organic matters in waste water; and simultaneously, due to the particle electrode, the contact area and the contact time of the waste water and the fenton reagent are increased, and the mass transfer effect of the waste water in the reactor is reduced. The invention is applicable to treatment of various types of organic waste water, the equipment is compact, the operation is easy, the whole reactor is easy to control, and the requirements of an actual water treatment unit are met.
Owner:HUAZHONG NORMAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products