Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1663 results about "Material Separation" patented technology

Nasal dilator with means to direct resilient properties

ActiveUS8062329B2Great delaminating tendencyReduce forceRespiratorsBreathing masksNasal passageNasal passages
A nasal dilator comprises a laminate of vertical layers each consisting of one or more members or components. The laminated layers form a unitary, or single body, truss featuring horizontal regions adapted to engage outer wall tissues of first and second nasal passages and to traverse the bridge of a nose therebetween. When in use the dilator acts to stabilize and / or expand the nasal outer wall tissues and prevent said tissues from drawing inward during breathing. The dilator includes means to direct its resilient properties comprising one or more interior or exterior material separations, or discontinuity of shape of material, formed in at least one region of the truss and extending through at least one layer of the dilator. Said material separation or discontinuity of shape may comprise an opening, relief cut, slit or notch, and which may be configured to separate or vertically protrude, in part, from the truss when the dilator is in use on the nose of a wearer. Said separation or vertical protrusion changes the angle of focused delaminating spring biasing forces generated by the resilient layer, transforming said forces, at least in part, from primarily peel forces into primarily shear forces, and further redistributing or imparting said transformed forces to tissue engaging surface areas extending outward and beyond said material separation.
Owner:HORIZON IP TECH LLC

Applications of laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M

Method for recycling waste lithium cobalt oxide lithium ion battery

The invention relates to a method for recycling waste lithium cobalt oxide lithium ion battery. The method is characterized in that valuable components in the waste lithium ion battery are completely recycled by integrating the processes of crushing by a punch press, magnetic separation, eddy current selection, anaerobic atmospheric roasting, temperature-variable filtering and the like, and products with the relatively high additional values, such as elemental crude cobalt, lithium carbonate, graphite, copper, aluminum, iron, and plastics are obtained. Manners of crushing by a punch press, magnetic separation, eddy current selection and the like are adopted for performing material separation, so that the original physical properties of materials are kept. Meanwhile, positive powder and negative powder of an electrode material are cooperatively treated, the negative graphite material is effectively utilized, the in-situ preparation of a resource can be realized, and the waste lithium ion battery can be relatively completely recycled. The anaerobic atmospheric roasting is adopted, so that the reaction condition is relatively loose, the loss of a graphite material is reduced, the cost is saved, the technological flow is simplified, and the industrial application practice can be facilitated.
Owner:SHANGHAI JIAO TONG UNIV

Preparation method for microporous membrane having multi-scale gradient micro-structure surface

ActiveCN103611437APlay the role of inner support reinforcementControllable areaSemi-permeable membranesMicro structureUltrafiltration
The present invention relates to a preparation method for a microporous membrane having a multi-scale gradient micro-structure surface. The method comprises: fixing a screen mesh on the upper surface of a rough flexible substrate, coating a polymer solution layer with a thickness of 50-500 mum on the upper surface of the screen mesh at a constant speed, curing, washing, and carrying out simple mechanical peeling to remove the rough flexible substrate to obtain the microporous membrane having the multi-scale gradient micro-structure surface. According to the present invention, the process of the method is simple, the membrane area can be controlled, continuous production can be achieved, mechanical properties of the membrane are high, and the membrane has super-hydrophobic or super-hydrophilic property, wherein the super-hydrophobic membrane has super-lipophilic property, and the super-hydrophilic membrane has super-oleophobic property under water and has super-hydrophobic property under oil; and the obtained membrane can be adopted to effectively separate various oil and water mixtures including nano-scale oil water emulsions, and can further be used in fields of self-cleaning ultrafiltration/microfiltration membrane sewage treatments, medical sterilization, food turbidity removal, sterilization, material separation, membrane distillation, and the like.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M

Incineration treatment method for domestic refuse

The invention provides an incineration treatment method for domestic refuse. The method comprises: having an incinerator arranged between a rotary kiln and a decomposing furnace; introducing tertiary hot air into a wind tower of the incinerator and baking an incinerator body; crushing domestic refuse with the water content less than 20 percent into refuse material 50 to 80 millimeters in particle size and guiding the refuse material into the incinerator body through an electronic control feeder of the incinerator; allowing a material level meter to send a feedback signal to stop adding the refuse material when a refuse material layer is 50 millimeters away from a material separation body; drying the refuse material; burning, decomposing and gasifying organic substances in the refuse material through the tertiary hot air out of a multi-layer air outlet of a central air pipe; ensuring that the temperature in the incinerator body is above 850 DEG C; discharging produced flue gas to the decomposing furnace through a smoke outlet; ensuring that the decomposing furnace reaches a temperature of above 900 DEG C and is in an alkaline atmosphere; and further neutralizing acidic flue gas. Refuse ash-slag is discharged through an electrical vibrating material discharger, sent into the rotary kiln, and is taken as raw material burden for cement production to participate in calcination, so that the aim of treating domestic refuse in a 'harmless, amount-reducing and resource-recovering' way is achieved.
Owner:CITIC HEAVY INDUSTRIES CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products