Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1263 results about "Plasmon" patented technology

In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS

An optical sensor and method for use with a visible-light laser excitation beam and a Raman spectroscopy detector, for detecting the presence chemical groups in an analyte applied to the sensor are disclosed. The sensor includes a substrate, a plasmon resonance mirror formed on a sensor surface of the substrate, a plasmon resonance particle layer disposed over the mirror, and an optically transparent dielectric layer about 2-40 nm thick separating the mirror and particle layer. The particle layer is composed of a periodic array of plasmon resonance particles having (i) a coating effective to binding analyte molecules, (ii) substantially uniform particle sizes and shapes in a selected size range between 50-200 nm (ii) a regular periodic particle-to-particle spacing less than the wavelength of the laser excitation beam. The device is capable of detecting analyte with an amplification factor of up to 1012-1014, allowing detection of single analyte molecules.
Owner:POPONIN VLADIMIR

Methods and devices for plasmon enhanced medical and cosmetic procedures

InactiveUS20050203495A1Enhanced and very confined body surgeryBetter-controlled surgery and treatment conditionsCosmetic preparationsHair removalHair removalMedical treatment
Composition of methods and devices for surface plasmon resonance-enhanced medical and cosmetic procedures are disclosed. The invention relates to the use of a nonlinear surface plasmon resonance generation source and metal nanoparticles embedded to a body to enhance medical and cosmetic procedures in the body. The methods and devices in this invention can be applied for very effective three-dimensionally localized body surgery, tattoo removal, skin pigmentation removal, hair removal, drug delivery, photodynamic therapy, thrombosis, lithotripsy and cosmetic body treatment. The present invention relates also to a method of making temporary, semi-permanent and permanent tattoos with surface plasmon resonance technique.
Owner:US PATENT & TRADEMARK OFFICE

Detection of ion channel or receptor activity

The invention provides nanosensors and nanosensor components for the detection of ion channel activity, receptor activity, or protein protein interactions. Certain of the nanosensor components comprise a nanoparticle and recognition domain. Following contact with cells and, optionally, internalization of the nanosensor component by a cell, the recognition domain binds to a target domain, e.g., a heterologous target domain, of a polypeptide of interest such as an ion channel subunit, G protein coupled receptor (GPCR), or G protein subunit. Ion channel activity, GPCR activity, or altered protein interaction results in a detectable signal. The nanoparticles may be functionalized so that they respond to the presence of an ion by altering their proximity. Certain of the nanosensors utilize the phenomenon of plasmon resonance to produce a signal while others utilize magnetic properties, RET, and / or ion-sensitive moieties. Also provided are polypeptides, e.g., ion channel subunits, comprising a heterologous target domain, and cell lines that express the polypeptides. Further provided are a variety of methods for detecting ion channel activity, receptor activity, or protein interaction and for identifying compounds that modulate one or more of these. In certain embodiments the invention allows the user to detect the activity of specific ion channels even in the presence of other channels that permit passage of the same ion(s) or result in activation of the same downstream targets, thereby achieving improved specificity in high throughput screens while at the same time providing a high signal to noise ratio.
Owner:CHILDRENS MEDICAL CENT CORP +1

Method and spectral/imaging device for optochemical sensing with plasmon-modified polarization

The invention discloses a method and spectral-imaging device for optochemical sensing with plasmon-modified multiband fluorescence polarization and with plasmon-modified polarization phase shift changes of a light beam reflected and / or passed through a total internal reflection conducting structure. The optochemical sensing is performed for molecules placed nearby the conducting structure and being excited by surface plasmon resonance (SPR) to lower excited state (LES) and / or to higher excited states (HES). The invention also describes the spectral imaging device with an improved sensitivity of several orders of magnitude. The disclosed method and imaging device may find applications in clinical diagnostics, pharmaceutical screening, biomedical research, biochemical-warfare detection and other diagnostic techniques. The device can be used in bio-chip and micro-array technologies, flowcytometer, fiber optic and other types of diagnostic devices.
Owner:AMERICAN ENVIRONMENTAL SYST

Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS

An optical sensor and method for use with a visible-light laser excitation beam and a Raman spectroscopy detector, for detecting the presence chemical groups in an analyte applied to the sensor are disclosed. The sensor includes a substrate, a plasmon resonance mirror formed on a sensor surface of the substrate, a plasmon resonance particle layer disposed over the mirror, and an optically transparent dielectric layer about 2-40 nm thick separating the mirror and particle layer. The particle layer is composed of a periodic array of plasmon resonance particles having (i) a coating effective to binding analyte molecules, (ii) substantially uniform particle sizes and shapes in a selected size range between 50-200 nm (ii) a regular periodic particle-to-particle spacing less than the wavelength of the laser excitation beam. The device is capable of detecting analyte with an amplification factor of up to 1012-1014, allowing detection of single analyte molecules.
Owner:POPONIN VLADIMIR

Optical surface plasmon-wave communications systems

A plurality of optical communications systems including a SPW modulator are described. The communications systems include an optical transmitter coupled to an optical fiber communications link which carries a optically modulated information signal to an optical receiver. The laser transmitter includes a laser light source which is optically coupled to a SPW modulator which has been particularly adapted for broadband communications by selecting its transfer characteristic and modulation structure. A broadband signal containing a plurality of information channels, for example CATV channels, is applied to it modulator electrodes. The modulation signal varies the power coupling between the guided laser light source signal and a SPW in the modulator. The result is an intensity modulated optical signal that is output to the optical fiber for transmission to the optical receiver of the system. Alternatively, the communications system includes a high power laser coupled to an optical splitter to divide its output power in two or more optical source outputs. Each optical source output is then used to drive an associated SPW modulator. Each of the modulators receives a broadband signal with which to modulate its optical source. After modulation, the modulated lightwave from a modulator is coupled to a corresponding optical fiber for carriage to an optical receiver. In this manner, several broadband information signals can be communicated over the system using only one laser source. A net benefit from using one higher power laser, rather than several lower power ones, is one of cost, purity and similarity of the several signals. This configuration is enhanced by the lower loss and higher linearity of the SPW modulators. Further, several WDM embodiments including those having serially cascaded SPW modulators are provided. The transfer characteristic of the SPW modulators are tailored to either be more efficient for an analog or a digital modulation signal by adding or subtracting grating effects.
Owner:VERIFIBER TECH

Thermo-optic plasmon-polariton devices

A waveguide structure comprises a thin strip of material having a relatively high free charge carrier density surrounded by material having a relatively low free charge carrier density. The width and thickness of the strip are dimensioned such that optical radiation having a wavelength in a predetermined range couples to the strip and propagates along its length as a plasmon-polariton wave. The device includes a waveguide heater for passing a current through the strip to heat it and the surrounding material, so as to vary propagation of the optical radiation, or means for monitoring propagation of the optical radiation to determine a change in temperature of the strip. Some embodiments provide both heating of the strip and monitoring of its temperature.
Owner:SPECTALIS

Semiconductor light emitting device and method for manufacturing the same

A semiconductor light emitting device comprises a semiconductor multilayer film including an active layer for generating light, a p electrode formed on the semiconductor multilayer film, and a plasmon generating layer, which are provided on a substrate. A portion of the semiconductor multilayer film including at least the active layer forms a plurality of rods. The plasmon generating layer (8) fills between each rod. The plasmon generating layer (8) is formed of a material having a negative dielectric constant at the wavelength of emitted light. The rods are arranged in a periodic manner.
Owner:PANASONIC CORP

Method and apparatus for enhanced nano-spectroscopic scanning

Apparatus and method for examining the identity of chemical groups in a sample are disclosed. The apparatus has a substrate having a plasmon resonant surface on which the sample is supported, a source of a beam of light, and a lens assembly having a tip region and a nanolens composed of one or more plasmon resonance particles (PRPs) on the tip region. The PRPs are arranged to produce near-field electromagnetic gap modes in a space between the nanolens and a confronting detection region on the substrate surface when the gap between the nanolens and substrate is 30 nm or less. A focusing mechanism in the apparatus operates to move the lens assembly toward and away from the substrate surface, with a gap of less than 30 nm, to produce electromagnetic gap modes that enhance the Raman spectroscopy signals produced by the sample in the detection region. The apparatus and method are useful, for example, in identifying successive bases in a single DNA strand, for direct DNA sequencing. In one embodiment, the nanolens is positioned adjacent a nanopore opening for use in identifying successive bases of DNA, as the individual DNA bases are translocated through the nanopore.
Owner:POPONIN VLADIMIR

Thermo-optic plasmon-polariton devices

A waveguide structure comprises a thin strip of material having a relatively high free charge carrier density surrounded by material having a relatively low free charge carrier density. The width and thickness of the strip are dimensioned such that optical radiation having a wavelength in a predetermined range couples to the strip and propagates along its length as a plasmon-polariton wave. The device includes a waveguide heater for passing a current through the strip to heat it and the surrounding material, so as to vary propagation of the optical radiation, or means for monitoring propagation of the optical radiation to determine a change in temperature of the strip. Some embodiments provide both heating of the strip and monitoring of its temperature.
Owner:SPECTALIS

Applications of laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M

Probe of conducting atomic force microscope and measuring methods employing probe

The invention relates to a probe of a conducting atomic force microscope. The probe comprises: a substrate of a cantilever probe; a needle tip; and a conductive film, which is arranged at a surface of the needle tip. Besides, the material of the conductive film is graphene. Moreover, the invention provides a method that employs the probe to measure local conductivity of a semiconductor and a needle tip-free near-field optical detection method that employs the probe to measure a terahertz wave band. According to the invention, graphene is utilized, wherein the grapheme has the following characteristics that: the graphene is composed of carbon atoms and is thin to a monatomic layer; and the graphene is a semimetal two-dimensional thin material that has a zero gap; besides, the probe has advantages of good conductivity and high electron mobility; moreover, a Fermi surface can carry out self-adjustment with charging and discharging motions and a carrier injection potential is low. In addition, an electronic plasmon oscillating frequency of the graphene is just at a terahertz wave band; and the graphene has soft materials and strong stability on thermodynamics. The above-mentioned statements are physical bases on which the graphene is utilized to replace a traditional metal material as a plated film of a surface of an atomic force microscope probe, so that the above-mentioned limitations are broken through.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Photodetector with surface plasmon resonance

Methods and structures for providing single-color or multi-color photo-detectors leveraging plasmon resonance for performance benefits. In one example, a radiation detector includes a semiconductor absorber layer having a first electrical conductivity type and an energy bandgap responsive to radiation in a first spectral region, a semiconductor collector layer coupled to the absorber layer and having a second electrical conductivity type, and a plasmonic resonator coupled to the collector layer and having a periodic structure including a plurality of features arranged in a regularly repeating pattern.
Owner:RAYTHEON CO

Nanoprisms and method of making them

The invention is a novel photo-induced method for converting large quantities of silver nanospheres into nanoprisms, the nanoprisms formed by this method and applications in which the nanoprisms are useful. Significantly, this light driven process results in a colloid with a unique set of optical properties that directly relate to the nanoprism shape of the particles. Theoretical calculations coupled with experimental observations allow for the assignment of the nanoprism plasmon bands and the first identification of two distinct quadrupole plasmon resonances for a nanoparticle. Finally, unlike the spherical particles from which they derive and which Rayleigh light scatter in the blue, these nanoprisms exhibit scattering in the red, permitting multicolor diagnostic labels based not only on nanoparticle composition and size but also on shape.
Owner:NORTHWESTERN UNIV

Structure, structure manufacturing method and sensor using the same

InactiveUS7079250B2Enhance and stabilize sensor sensitivityRegularly arrangedBioreactor/fermenter combinationsBiological substance pretreatmentsResonanceAluminium oxide
A plasmon resonance device 100 according to an example of a structure is characterized in that metallic particles 7 isolated from each other are formed in each of a plurality of pores 5 of anodic oxidized alumina 3. As a method of manufacturing the plasmon resonance device 100, a metal is coated on the anodic oxidized alumina 3 opening the pores 5 and a metal coated element provided on the opening surface of the pore in the anodic oxidized alumina 3 is removed. Consequently, metallic particles isolated from each other are formed in the respective independent pores. The plasmon resonance device 100 can be used as a sensor utilizing a localized plasmon resonance phenomenon.
Owner:FUJIFILM CORP

Optical apparatuses using the near-field light

Optical apparatuses are provided that use near-field light, where high spatial resolution and high sensitivity are made compatible. Highly intense near-field light is generated in a narrow area using localized plasmons that are produced in a metal pattern 106 in a shape that bears anisotropy and is made to irradiate a measured subject. The direction of polarization 104 of incident light 103 is modulated and signal light is subjected to synchronous detection, so that background light is removed and high sensitivity is achieved.
Owner:HITACHI LTD

Bowtie Nanoantennas and Methods of Using the Same

A pillar-nanoantenna array structure is fabricated with a substrate to which pairs of pillars are coupled, where the pillars are characterized either by a thermal conductance less than 0.1 μW / deg or by transparency and a height exceeding thickness by at least a factor of two. Metallic caps atop a neighboring pair of pillars are separated by no more than 50 nm. An image-capture structure may be formed by modifying reflectance of a portion of the structure by heating of the portion by electromagnetic radiation. The array may be plastically deformed by raster scanning an electron beam across the array, exciting plasmon modes in the conducting particles thereby inducing a gradient force between neighboring conducting particles, and deforming neighboring pillars in such a manner as to vary the spacing separating neighboring conducting particles. A technique of plasmon-assisted etching provides for fabricating specified planar pattern of metal outside a cleanroom environment.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Spatially-separated pump-probe transient absorption spectrograph and realization method

The invention discloses a spatially-separated pump-probe transient absorption spectrograph and a realization method. The realization method is characterized by generating a light source through a femtosecond light source system; realizing the beam splitting of pump light and probe light through a beam splitter; realizing the different time delay of the probe light through a time delay line; realizing the two-dimensional rotation and the calibration of the probe light within a horizontal plane and a vertical plane through a sweep reflector group; calibrating which means guaranteeing the incidence of the rotated probe light into a aperture within the front section of an objective lens; finally, obtaining a two-dimensional image formed on a sample under the combined action of the probe light and the pump light by a data collection system. According to the spatially-separated pump-probe transient absorption spectrograph and the realization method, the extremely high spatial discrimination can be realized, and moreover, the visual probe of carriers, excitors or plasmons can be realized.
Owner:HUNAN UNIV

Advanced methods and systems for treating cell proliferation disorders

The present invention relates to methods for treating cell proliferation disorders comprising (1) administering to the subject at least one activatable pharmaceutical agent that is capable of activation by a simultaneous two photon absorption event and of effecting a predetermined cellular change when activated, (2) administering at least one plasmonics-active agent to the subject, and (3) applying an initiation energy from an initiation energy source to the subject, wherein the plasmonics-active agent enhances or modifies the applied initiation energy, such that the enhanced or modified initiation energy activates the activatable pharmaceutical agent by the simultaneous two photon absorption event in situ, thus causing the predetermined cellular change to occur, wherein said predetermined cellular change treats the cell proliferation related disorder, and the use of plasmonics enhanced photospectral therapy (PEPST) and exiton-plasmon enhanced phototherapy (EPEP) in the treatment of various cell proliferation disorders, and the PEPST and EPEP agents and probes
Owner:IMMUNOLIGTHT LLC +1

Detection Apparatus and Detection Method for Plasmon Resonance and Fluorescence

A plurality of different ligands are fixed on a metal array including a plurality of metal films formed on a substrate and are irradiated with light from a rear surface of the substrate to measure surface plasmon resonance and fluorescence based on evanescent wave at the same time, thus permitting screening for concurrently measuring a plurality of items with accuracy.
Owner:CANON KK

Plasmon-enhanced marking of fragile materials and other applications thereof

The methods and applications of a surface plasmon resonance-enhanced marking technique are disclosed. The technique uses surface plasmon resonance (SPR) excited nanoparticles and a surface plasmon resonance source in nonlinear interactions with nearby chemical substances and medium for marking purposes. The SPR-enhanced absorption and fluorescence rates of chemical substances or medium and nonlinearity of SPR interactions with chemical substances or medium make the proposed method suitable for marking fragile materials including biomaterials, such as writing on thin plastic foils or DNA-protein crosslinking. The marking method can also be applied to a three-dimensional recording and read out information system with subwavelength resolutions, coding information of secrete documents, drug delivery, tissue surgery, tattoo writing or removal, photodynamic therapy, cosmetic and dermatological treatment.
Owner:SPR ADVANCED TECH INC

Applications of laser-processed substrate for molecular diagnostics

Surface enhanced Raman Scattering (SERS) and related modalities offer greatly enhanced sensitivity and selectivity for detection of molecular species through the excitation of plasmon modes and their coupling to molecular vibrational modes. One of the chief obstacles to widespread application is the availability of suitable nanostructured materials that exhibit strong enhancement of Raman scattering, are inexpensive to fabricate, and are reproducible. I describe nanostructured surfaces for SERS and other photonic sensing that use semiconductor and metal surfaces fabricated using femtosecond laser processing. A noble metal film (e.g., silver or gold) is evaporated onto the resulting nanostructured surfaces for use as a substrate for SERS. These surfaces are inexpensive to produce and can have their statistical properties precisely tailored by varying the laser processing. Surfaces can be readily micropatterned and both stochastic and self-organized structures can be fabricated. This material has application to a variety of genomic, proteomic, and biosensing applications including label free applications including binding detection. Using this material, monolithic or arrayed substrates can be designed. Substrates for cell culture and microlabs incorporating microfluidics and electrochemical processing can be fabricated as well. Laser processing can be used to form channels in the substrate or a material sandwiched onto it in order to introduce reagents and drive chemical reactions. The substrate can be fabricated so application of an electric potential enables separation of materials by electrophoresis or electro-osmosis.
Owner:EBSTEIN STEVEN M

Thermally-assisted magnetic recording head including plasmon generator

An outer surface of a plasmon generator includes: a plasmon exciting part that faces an evanescent light generating surface with a predetermined distance therebetween; and a front end face located in a medium facing surface. The plasmon generator has: first and second sidewall parts that are connected to the plasmon exciting part and increase in distance from each other with increasing distance from the plasmon exciting part; and at least one extended portion connected to an edge of at least one of the first and second sidewall parts opposite from the plasmon exciting part. A magnetic pole has a portion interposed between the first and second sidewall parts. The front end face includes first and second portions lying at ends of the first and second sidewall parts and connected to each other into a V-shape. An end face of the magnetic pole has a portion interposed between the first and second portions of the front end face.
Owner:TDK CORPARATION

Electroluminescence element and display device using the same

In an EL element including a light emitting layer sandwiched between upper and lower electrodes, of light emitted therefrom, light totally reflected at a light emitting layer interface is not taken out, so there is a problem in that light emission efficiency reduces. Therefore, a light scattering layer in which metal particles are dispersed is provided between an electrode and the light emitting layer. According to such a structure, the light from the light emitting layer can be scattered by the metal particles and taken out, thereby improving the light emission efficiency. When plasmon is excited in the metal particles, light confined in the light emitting layer or each layer adjacent thereto can be used, thereby improving light use efficiency.
Owner:SEIKO INSTR INC

Plasmon energy converter

An energy converter employing plasmons. In a specific embodiment, a receiver receives a first type of energy or signal and provides one or more plasmons in response thereto. A detector is coupled to the receiver. The detector converts the one or more plasmons into a second type of energy or signal. In a more specific embodiment, the first type of energy or signal includes incident electromagnetic energy, such as visible, infrared, or ultraviolet radiation. The second type of energy or signal includes an electrical signal. The receiver includes a conductor grating that is coupled to a dielectric material. Examples of the detector includes a pn-junction and an interfacial bandgap junction. The receiver and the detector are coupled so that the one or more plasmons form a plasma wave as they travel from the receiver to the detector.
Owner:TANNER RES

Graphene plasmon device used for enhancing infrared spectrum detection and preparation method thereof

The invention provides a graphene plasmon device used for enhancing infrared spectrum detection. The graphene plasmon device comprises a substrate, a dielectric layer, a graphene layer, a source electrode, a drain electrode metal layer and material to be detected which are arranged from the bottom to the top in turn. The substrate also acts as a gate electrode. The dielectric layer is deposited on the substrate. The graphene layer covers the dielectric layer. The source electrode and the drain electrode metal layer are deposited on the graphene layer. The source electrode and the drain electrode metal layer are conducted by graphene. The dielectric layer is clamped between the substrate and the graphene layer. The partial region of the graphene layer between the source electrode and the drain electrode metal layer has a periodic micro-nano structure which includes multiple continuous structures with step-shaped longitudinal sections. A material layer to be detected is arranged to cover the step-shaped structures. The material of the dielectric layer is selected from NaCl, KBr, CsI, CsBr, MgF2, CaF2, BaF2, LiF, AgBr, AgCl, ZnS, ZnSe, KRS-5, AMTIR1-6, Diamond and SiO2.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Raman imaging and sensing apparatus employing nanoantennas

InactiveUS20040174521A1High sensitivityFacilitates nanoscale measurementRadiation pyrometryRaman scatteringRaman imagingResonance
A Raman imaging and sensing apparatus is described. The apparatus employs a nanoantenna structure which includes a metal tip spaced from a metal surface or particle. A light beam impinges upon the nanoantenna and causes plasmon resonance. The plasmon resonance excites a sample resulting in dramatically enhanced Raman scattering of the sample. The Raman scatter is collected by a spectrophotometer which provides an output signal indicative of the composition of the sample.
Owner:PURDUE RES FOUND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products