Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

432 results about "Raster scan" patented technology

A raster scan, or raster scanning, is the rectangular pattern of image capture and reconstruction in television. By analogy, the term is used for raster graphics, the pattern of image storage and transmission used in most computer bitmap image systems. The word raster comes from the Latin word rastrum (a rake), which is derived from radere (to scrape); see also rastrum, an instrument for drawing musical staff lines. The pattern left by the lines of a rake, when drawn straight, resembles the parallel lines of a raster: this line-by-line scanning is what creates a raster. It is a systematic process of covering the area progressively, one line at a time. Although often a great deal faster, it is similar in the most-general sense to how one's gaze travels when one reads lines of text.

Scanning device for coded data

A scanning device for: scanning coded data disposed on a surface; and generating interaction data based on the sensed coded data, the interaction data being indicative of interaction of the scanning device with the surface; the coded data including, at a plurality of locations on the interface surface, a corresponding plurality of coded data portions, the scanning device comprising: (a) a laser source and scan optics configured to emit a scanning beam through an aperture in a housing of the scanning device, the scanning beam being directed in first and second orthogonal directions to thereby generate a raster scan pattern over a scanning patch, the scanning patch being positioned to cause the exposure of the at least one coded data portion when the surface and the sensing device are positioned operatively with respect to each other; (b) a photodetector for detecting reflection of the scanning beam from the surface, thereby to capture sample information; (c) at least one analog to digital converter for converting the captured sample information into sample data; (d) a first framestore for storing successive sample data as image data; (e) an image processor for processing the image data to generate processed image data; (e) a host processor for generating the interaction data based at least partially on the processed image data.
Owner:SILVERBROOK RES PTY LTD

Method and apparatus for measuring and monitoring optical properties based on a ring-resonator

A method and apparatus for performing refractive index, birefringence and optical activity measurements of a material such as a solid, liquid, gas or thin film is disclosed. The method and apparatus can also be used to measure the properties of a reflecting surface. The disclosed apparatus has an optical ring-resonator in the form of a fiber-loop resonator, or a race-track resonator, or any waveguide-ring or other structure with a closed optical path that constitutes a cavity. A sample is introduced into the optical path of the resonator such that the light in the resonator is transmitted through the sample and relative and/or absolute shifts of the resonance frequencies or changes of the characteristics of the transmission spectrum are observed. A change in the transfer characteristics of the resonant ring, such as a shift of the resonance frequency, is related to a sample's refractive index (refractive indices) and/or change thereof. In the case of birefringence measurements, rings that have modes with two (quasi)-orthogonal (linear or circular) polarization states are used to observe the relative shifts of the resonance frequencies. A reflecting surface may be introduced in a ring resonator. The reflecting surface can be raster-scanned for the purpose of height-profiling surface features. A surface plasmon resonance may be excited and phase changes of resonant light due to binding of analytes to the reflecting surface can be determined in the frequency domain.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Antialiased imaging with improved pixel supersampling

An image processing system is described that receives polygonal image data at the direction of a processor and develops antialiased image data for display on a raster scanned display. In particular, the image system includes a scan convertor for converting the polygonal image data into pixel data, which includes pixel screen coordinates and at least one color value for each polygon covered pixel of the pixel data and a supersample coverage mask indicating an extent of polygon coverage within each polygon covered pixel. The image system also includes a raster system having at least one image processor for receiving the pixel data for each pixel, for developing a region mask based on the supersample coverage mask, and for storing the color value in association with the region mask as anitialiased display data in an image memory in communication with the image processor based on the pixel screen coordinates. The region mask indicates one or more, geographical regions of supersamples within each pixel covered by one or more polygons and indicates a color value stored in the image memory to be assigned to the supersamples in a region. This requires only a single color value for supersamples within a region of a covered pixel to be stored in the image memory. The image system can also be configured to develop and store Z-values, alpha values, stencil values, and texture values for each pixel for storage in the image memory in association with the region mask.
Owner:MICROSOFT TECH LICENSING LLC

Laser projection system

A laser projection system preferably for use in commercial motion picture theaters and other large screen venues, including home theater, uses optical fibers to project modulated laser beams for raster scanning on the screen. The emitting ends of the optical fibers are arranged in an array such that red, green and blue spots are simultaneously scanned onto the screen in multiple lines spaced one or more than one scan line apart. The use of optical fibers for laser beam projection eliminates the need to use complex optics, and enables the scanning of small, high resolution spots on the screen. The use of optical fiber also permits convenient packaging and permits replacement, upgrading or modification of the system components. The scanning of multiple lines simultaneously is accomplished by reordering the video signal with a microprocessor controller component to write lines in a sequence after repeated vertical sweeps to form a complete picture. In a preferred embodiment, the video signal is reordered to scan different color beams at different times to render the desired composite of the red, green and blue spots at each dot location on the screen. Alternate embodiments are disclosed to illustrate the flexibility of the system for different optical fiber output head spacings, and for different types of laser, modulation, and scanning components.
Owner:MAGIC LANTERN

Image segmentation and adaptive weighting-based stereo matching method

ActiveCN105513064AEliminate parallax errorsImprove matching accuracyImage analysisParallaxGrating
The invention discloses an image segmentation and adaptive weighting-based stereo matching method. The method comprises the steps of parallax initialization and parallax optimization. The parallax initialization comprises the steps of adopting corrected left and right images as a reference image and a target image respectively, and segmenting the image; based on the constructed combination segmentation information and an adaptive-weighting cost function, calculating matching costs E (p, pd, d) between a current to-be-matched pixel pint p in the left image and all candidate matching points pd in the right image, and selecting a candidate matching point of a minimum matching cost as an optimal matching point for the pixel pint p; repeating the above steps till all pixel points in the left image are traversed in the raster scan order. In this way, an initial parallax image is obtained. The parallax optimization comprises the steps of fitting the parallax plane of the obtained initial parallax image, suppressing the abnormity of the initial parallax image, and recovering the edge of the initial parallax image. The method is advantaged in that unreliable points in the initial parallax image obtained based on the calculation of the optimal matching point are re-corrected, while abnormal small areas are merged to adjacent normal areas. Meanwhile, edge pixels are recovered, and the parallax error is eliminated. The matching accuracy is improved.
Owner:ZHEJIANG WANLI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products