Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

4501 results about "Image segmentation" patented technology

In computer vision, image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels, also known as image objects). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.

Method and apparatus for matching portions of input images

A method and apparatus for finding correspondence between portions of two images that first subjects the two images to segmentation by weighted aggregation (10), then constructs directed acylic graphs (16,18) from the output of the segmentation by weighted aggregation to obtain hierarchical graphs of aggregates (20,22), and finally applies a maximally weighted subgraph isomorphism to the hierarchical graphs of aggregates to find matches between them (24). Two algorithms are described; one seeks a one-to-one matching between regions, and the other computes a soft matching, in which is an aggregate may have more than one corresponding aggregate. A method and apparatus for image segmentation based on motion cues. Motion provides a strong cue for segmentation. The method begins with local, ambiguous optical flow measurements. It uses a process of aggregation to resolve the ambiguities and reach reliable estimates of the motion. In addition, as the process of aggregation proceeds and larger aggregates are identified, it employs a progressively more complex model to describe the motion. In particular, the method proceeds by recovering translational motion at fine levels, through affine transformation at intermediate levels, to 3D motion (described by a fundamental matrix) at the coarsest levels. Finally, the method is integrated with a segmentation method that uses intensity cues. The utility of the method is demonstrated on both random dot and real motion sequences.

System and method for determining image similarity

A system and method for determining image similarity. The method includes the steps of automatically providing perceptually significant features of main subject or background of a first image; automatically providing perceptually significant features of main subject or background of a second image; automatically comparing the perceptually significant features of the main subject or the background of the first image to the main subject or the background of the second image; and providing an output in response thereto. In the illustrative implementation, the features are provided by a number of belief levels, where the number of belief levels are preferably greater than two. The perceptually significant features include color, texture and/or shape. In the preferred embodiment, the main subject is indicated by a continuously valued belief map. The belief values of the main subject are determined by segmenting the image into regions of homogenous color and texture, computing at least one structure feature and at least one semantic feature for each region, and computing a belief value for all the pixels in the region using a Bayes net to combine the features. In an illustrative application, the inventive method is implemented in an image retrieval system. In this implementation, the inventive method automatically stores perceptually significant features of the main subject or background of a plurality of first images in a database to facilitate retrieval of a target image in response to an input or query image. Features corresponding to each of the plurality of stored images are automatically sequentially compared to similar features of the query image. Consequently, the present invention provides an automatic system and method for controlling the feature extraction, representation, and feature-based similarity retrieval strategies of a content-based image archival and retrieval system based on an analysis of main subject and background derived from a continuously valued main subject belief map.

System For 3D Monitoring And Analysis Of Motion Behavior Of Targets

The present invention relates to a system for the 3-D monitoring and analysis of motion-related behavior of test subjects. The system comprises an actual camera, at least one virtual camera, a computer connected to the actual camera and the computer is preferably installed with software capable of capturing the stereo images associated with the 3-D motion-related behavior of test subjects as well as processing these acquired image frames for the 3-D motion parameters of the subjects. The system of the invention comprises hardware components as well as software components. The hardware components preferably comprise a hardware setup or configuration, a hardware-based noise elimination component, an automatic calibration device component, and a lab animal container component. The software components preferably comprise a software-based noise elimination component, a basic calibration component, an extended calibration component, a linear epipolar structure derivation component, a non-linear epipolar structure derivation component, an image segmentation component, an image correspondence detection component, a 3-D motion tracking component, a software-based target identification and tagging component, a 3-D reconstruction component, and a data post-processing component In a particularly preferred embodiment, the actual camera is a digital video camera, the virtual camera is the reflection of the actual camera in a planar reflective mirror. Therefore, the preferred system is a catadioptric stereo computer vision system.

Binocular vision obstacle detection method based on three-dimensional point cloud segmentation

The invention provides a binocular vision obstacle detection method based on three-dimensional point cloud segmentation. The method comprises the steps of synchronously collecting two camera images of the same specification, conducting calibration and correction on a binocular camera, and calculating a three-dimensional point cloud segmentation threshold value; using a three-dimensional matching algorithm and three-dimensional reconstruction calculation for obtaining a three-dimensional point cloud, and conducting image segmentation on a reference map to obtain image blocks; automatically detecting the height of a road surface of the three-dimensional point cloud, and utilizing the three-dimensional point cloud segmentation threshold value for conducting segmentation to obtain a road surface point cloud, obstacle point clouds at different positions and unknown region point clouds; utilizing the point clouds obtained through segmentation for being combined with the segmented image blocks, determining the correctness of obstacles and the road surface, and determining position ranges of the obstacles, the road surface and unknown regions. According to the binocular vision obstacle detection method, the camera and the height of the road surface can be still detected under the complex environment, the three-dimensional segmentation threshold value is automatically estimated, the obstacle point clouds, the road surface point cloud and the unknown region point clouds can be obtained through segmentation, the color image segmentation technology is ended, color information is integrated, correctness of the obstacles and the road surface is determined, the position ranges of the obstacles, the road surface and the unknown regions are determined, the high-robustness obstacle detection is achieved, and the binocular vision obstacle detection method has higher reliability and practicability.

Industrial character identification method based on convolution neural network

The invention provides an industrial character identification method based on a convolution neural network. The method comprises the steps of establishing character data sets, carrying out data enhancement and preprocessing on the character data sets and establishing a CNN (Convolution Neural Network) integrated model, wherein the model comprises three different individual classifiers, training is carried out through utilization of the model, the training is finished by two steps, a first step is offline training, an offline training model is obtained, a second step is online training, the offline training model is used for initialization, a special production line character data set is trained, and an online training model is obtained; carrying out preprocessing, character positioning and single character image segmentation on a target image; sending the segmented character images to the trained online training model, and probability values of classifying the single target images into classes by the three classifiers in the CNN integrated model is obtained; final decision is carried out in a voting mode, thereby obtaining a classification result of test data. According to the method, characters on different production lines can be identified rapidly and efficiently.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products