Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

375 results about "Nanosensor" patented technology

Nanosensors are nanoscale devices that measure physical .quantities and convert those quantities to signals that can be detected and analyzed. There are several ways being proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications. Though all sensors measure different things, sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.

Ammonia nanosensors, and environmental control system

Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described.
Owner:NANOMIX

Carbon dioxide nanosensor, and respiratory CO2 monitors

An electronic system and method for detecting analytes, such as carbon dioxide, is provided, using an improved nanostructure sensor (CO2 sensor). The CO2 sensor may comprise a substrate and a nanostructure, such as a one or more carbon nanotubes disposed over the substrate (e.g., as a network). One or more conductive elements may electrically communicate with the nanostructure. A counter or gate electrode may be positioned adjacent the nanostructure. A functionalization material reactive with carbon dioxide may be included, either disposed in contact with the nanostructure or isolated by a dielectric. The sensor may be connected to a circuit responsive to changes in CO2 concentration in the environment. Embodiments are described of medical sensing systems including one or more CO2 sensors. One embodiment comprises a breath sampling cannula which is connected to a sensor unit. In an alternative, the cannula permits supplemental oxygen to be administered, while recovering and measuring analytes in breath samples. The cannula may connect to a portable processor-display unit for monitoring one or more analytes, such as CO2. Another embodiment includes a cannula configured for the monitoring of sleep disorders, such as apnea, comprising one or more sensors disposed adjacent a breath sampling channel, optionally including flow rate or other sensors. The sensors may be connected by wired or wireless links for to a processor / input / display unit. Any of the embodiments may include filters, selectively permeable membranes, absorbents, and the like to precondition the breath sample, may be configured to include complementary chemistry measurements.
Owner:NANOMIX

Oilfield Apparatus Comprising Swellable Elastomers Having Nanosensors Therein And Methods Of Using Same In Oilfield Application

Apparatus, oilfield assemblies, and methods of use are described. The apparatus comprises, in one embodiment, a swellable elastomeric composition comprising a swellable elastomer and one or more nanosensors dispersed therein and shaped into an oilfield element. Methods of the invention comprise using an apparatus of the invention in an oilfield operation, thus exposing the oilfield element to an oilfield environment, and sensing one or more reservoir parameters. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Owner:SCHLUMBERGER TECH CORP

Nanoelectronic sensor system and hydrogen-sensitive functionalization

A new sensing technology for chemical / biomolecular sensors is provided. One such sensor detects molecular hydrogen (H2) using nanoelectronic components. A tiny, low-cost nanosensor chip can offer: (i) performance that matches or exceeds that of existing technology, (ii) plug-and-play simplicity with both digital and analog control systems, and (ii) the small size and low power consumption needed for wireless integration.
Owner:NANOMIX

Homeland intelligence systems technology "h-list" and battlefield apparatus

Homeland Intelligence Systems Technology “H-LIST” and battlefield apparatus comprises nano-sensors embedded in a silicon substrate and etched / fused in a micro-fibered material. The silicon substrate is alloyed with miniaturized steel responsive to weapons, preventing bullet penetration and providing effective detection platform on an outfit. The outfit is operable for monitoring suspicious terrorist activities and for tracking biological and chemical gases, and explosives, including weapons of mass destruction and physiological conditions of personnel. Disclosed embodiments provide wearable detection apparatus comprising plurality sensors on an outfit configured to be worn by military personnel, an officer, a security officer, a bus driver, hostesses, Doctors, civil establishment hospital patients and the like, for protection and for sensing deadly gases, explosives, and physiological conditions in a defined area. A receptor is operatively configured and worn proximate to the outfit responsive to detection signals. The receptor is communicatively connected to the sensors and operable for receiving / analyzing detection signal communications wirelessly indicative of the presence of a sensed agent, whereby detected signals are transported wirelessly to a central security monitoring station, providing communications to first responders. The communications could be reachable to backup security personnel or agents, prompting them to respond to the vicinity of the detection. The sensors are multifunctional and coded to recognize wavelike pattern of gases and explosives traveling through the wave. Embodiments provide the outfit and the receptor being operable to process the portion of the detection signal to determine the detection type and / or whether there is a concealed object by conducting a test in which a first characteristic of a first dielectric constant associated with a person is determined, and a second characteristic of a second dielectric constant associated with the concealed object and or weapons of mass destruction is determined to expedite data transmission and communication to first responders.
Owner:TABE JOSEPH AKWO

Detection of ion channel or receptor activity

The invention provides nanosensors and nanosensor components for the detection of ion channel activity, receptor activity, or protein protein interactions. Certain of the nanosensor components comprise a nanoparticle and recognition domain. Following contact with cells and, optionally, internalization of the nanosensor component by a cell, the recognition domain binds to a target domain, e.g., a heterologous target domain, of a polypeptide of interest such as an ion channel subunit, G protein coupled receptor (GPCR), or G protein subunit. Ion channel activity, GPCR activity, or altered protein interaction results in a detectable signal. The nanoparticles may be functionalized so that they respond to the presence of an ion by altering their proximity. Certain of the nanosensors utilize the phenomenon of plasmon resonance to produce a signal while others utilize magnetic properties, RET, and / or ion-sensitive moieties. Also provided are polypeptides, e.g., ion channel subunits, comprising a heterologous target domain, and cell lines that express the polypeptides. Further provided are a variety of methods for detecting ion channel activity, receptor activity, or protein interaction and for identifying compounds that modulate one or more of these. In certain embodiments the invention allows the user to detect the activity of specific ion channels even in the presence of other channels that permit passage of the same ion(s) or result in activation of the same downstream targets, thereby achieving improved specificity in high throughput screens while at the same time providing a high signal to noise ratio.
Owner:CHILDRENS MEDICAL CENT CORP +1

Nanomaterial-based gas sensors

A gas sensing device (nanosensor) includes a substrate with at least a pair of conductive electrodes spaced apart by a gap, and an electrochemically functionalized semiconductive nanomaterial bridging the gap between the electrodes to form a nanostructure network. The nanomaterial may be single-walled carbon nanotubes (SWNTs) functionalized by the deposition of nanoparticles selected from the group consisting of an elemental metal (e.g., gold or palladium), a doped polymer (e.g., camphor-sulfonic acid doped polyaniline), and a metal oxide (e.g. tin oxide). Depending on the nanoparticles employed in the functionalization, the nanosensor may be used to detect a selected gas, such as hydrogen, mercury vapor, hydrogen sulfide, nitrogen dioxide, methane, water vapor, and / or ammonia, in a gaseous environment.
Owner:RGT UNIV OF CALIFORNIA

Anesthesia monitor, capacitance nanosensors and dynamic sensor sampling method

Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such as anesthesia gases, CO2 and the like in human breath. An integrated monitor system and disposable sensor unit is described which permits a number of different anesthetic agents to be identified and monitored, as well as concurrent monitoring of other breath species, such as CO2. The sensor unit may be configured to be compact, light weight, and inexpensive. Wireless embodiments provide such enhancements as remote monitoring. A simulator system for modeling the contents and conditions of human inhalation and exhalation with a selected mixture of a treatment agent is also described, particularly suited to the testing of sensors to be used in airway sampling.
Owner:NANOMIX

Embedded nanotube array sensor and method of making a nanotube polymer composite

A method of producing polymer / nanotube composites where the density and position of the nanotubes (11) within the composite ca be controlled. Carbon nanotubes (11) are grown from organometallic micropatterns. These periodic nanotube arrays are then incorporated into a polymer matrix (7) by deposing a curable polymer film on the as-grown tubes. This controlled method of producing free-standing nanotube / polymer composite films may be used to form nanosensor (3) which provide information regarding a physical condition of a material (20), such as an airplane chassis or wing, in contact with the nanosensor (3).
Owner:RENESSELAER POLYTECHNIC INST

Anesthesia monitor, capacitance nanosensors and dynamic sensor sampling method

Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such as anesthesia gases, CO2 and the like in human breath. An integrated monitor system and disposable sensor unit is described which permits a number of different anesthetic agents to be identified and monitored, as well as concurrent monitoring of other breath species, such as CO2. The sensor unit may be configured to be compact, light weight, and inexpensive. Wireless embodiments provide such enhancements as remote monitoring. A simulator system for modeling the contents and conditions of human inhalation and exhalation with a selected mixture of a treatment agent is also described, particularly suited to the testing of sensors to be used in airway sampling.
Owner:NANOMIX INC

Homeland intelligent systems technology "H-LIST"

Homeland Intelligence Systems Technology “H-LIST” comprises nano-sensors embedded in a silicon substrate and etched / fused in a micro-fibered material to enable an outfit for monitoring suspicious terrorist activities and for track biological and chemical gases, and explosives, including stationary and portable weapons of mass destruction such as those that are likely carried on the body of a terrorist or suicide bomber, or that are likely planted in a parked vehicle or carried inside a moving vehicle. H-LIST includes a wired outfit comprising at least a jacket that is worn by an officer, a security officer, a bus driver, hostesses, Doctors and the like, for sensing deadly gases and explosives in a defined area. A receptor is operatively configured with the outfit and attached on a waist belt, and communicatively connected to the outfit input / output connector through at least wired or wirelessly means for empowering the sensors and for receiving signal communication wirelessly; indicating the presence of a sensed agent. Detected signals are transported wirelessly through radio frequency signals to a central security monitoring station, enabling communication with first responders and backup security personnel or agents to the vicinity of the detection. The sensors are multifunctional and coded to recognize wavelike pattern of gases and explosives traveling through wave. The wired outfit and the receptor are operable to process the portion of the detection signal to determine whether there is a concealed object by conducting a test in which a first characteristic of a first dielectric constant associated with a person is determined, and a second characteristic of a second dielectric constant associated with the concealed object and or weapons of mass destruction is determined to expedite data transmission and communication to first responders.
Owner:TABE JOSEPH

Single molecule spectroscopy for analysis of cell-free nucleic acid biomarkers

The present invention relates, e.g., to a method for detecting a nucleic acid molecule of interest in a sample comprising cell-free nucleic acids, comprising fluorescently labeling the nucleic acid molecule of interest, by specifically binding a fluorescently labeled nanosensor or probe to the nucleic acid of interest, or by enzymatically incorporating a fluorescent probe or dye into the nucleic acid of interest, illuminating the fluorescently labeled nucleic acid molecule, causing it to emit fluorescent light, and measuring the level of fluorescence by single molecule spectroscopy, wherein the detection of a fluorescent signal is indicative of the presence of the nucleic acid of interest in the sample.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Homeland intelligence systems technology "H-List"

Homeland Intelligence Systems Technology “H-LIST” comprises nano-sensors embedded in a silicon substrate and etched / fused in a micro-fibered material alloyed with miniaturized steel responsive to preventing bullet penetration and to enable effective detection platform on an outfit for monitoring suspicious terrorist activities and for tracking biological and chemical gases, and explosives, including weapons of mass destruction and physiological conditions of personnel. H-LIST comprises plurality sensors on an outfit worn by an officer, a security officer, a bus driver, hostesses, Doctors, civil establishment hospital patients and the like, for sensing deadly gases, explosives, and physiological conditions in a defined area A receptor is operatively configured and worn proximate to the outfit responsive for empowering the sensors and for receiving / analyzing detection signal communications wirelessly indicative of the presence of a sensed agent, whereby detected signals are transported wirelessly to a central security monitoring station, enabling communication with first responders and backup security personnel or agents to the vicinity of the detection. The sensors are multifunctional and coded to recognize wavelike pattern of gases and explosives traveling through the wave, enabling the outfit and the receptor to be operable and process the portion of the detection signal to determine the detection type and / or whether there is a concealed object by conducting a test in which a first characteristic of a first dielectric constant associated with a person is determined, and a second characteristic of a second dielectric constant associated with the concealed object and or weapons of mass destruction is determined to expedite data transmission and communication to first responders.
Owner:TABE JOSEPH AKWO

Method and apparatus for wide area surveillance of a terrorist or personal threat

The present invention is related to a means for detecting external threats by the use of methods and apparatuses for the wide area detection of chemical, radiological or biological threats using modified personal wireless devices combined with new advanced micro and nanosensor technologies. A cost effective method is provided for wide area surveillance of a potential terrorist or personal threat. Personal electronic devices such as mobile phones, PDAs or watches, in combination with new microsensor technologies described herein, can be used as a new type of platform detection technology for wide area surveillance of major threats. A “Homeland Securitychip is further provided which combines the elements of geo-location, remote wireless communication and sensing into a single chip. The personal electronic devices can be further equipped for detecting various medically related threats. Similarly modified personal devices can be used to detect external threats that are person-specific.
Owner:GENTAG

Embeded advanced force responsive detection platform for monitoring onfield logistics to physiological change

A wearable outfit comprising nano-sensors for continuous physiological condition and body temperature monitoring configured with load cells and strain gages for monitoring and measuring the degree of force impacted on an athlete during a hit or collision in a sporting event such as a football game, the strain gages are composed of electrical resistance elements embedded in a micro-fibered material and etched in a silicon substrate and located in a position that is in contact with the body of the wearer. The wearable outfit also enables wireless communication to computer device configured for algorithm and analysis of the detected conditions and for signaling personnel about the severity of an injury or collision through either auditory or visual device. The computer device is configured with algorithms for enabling accurate interpretation of the physiological condition or body surface temperatures of personnel.
Owner:TABE JOSEPH AKWO

Friction electric nanometer sensor

The invention provides a friction nanometer sensor based on an electron transfer mechanism. The sensor comprises a first conducting element, a second conducting element and a space maintaining element, wherein the lower surface of the first conducting element is in contact with a placed first friction layer; a nanometer structure which directly grows on the upper surface of the second conducting element or is chemically linked with the upper surface of the second conducting element through keys is a second friction layer; the space maintaining element is used for enabling the lower surface of the first friction layer to be realize the face-to-face state with the upper surface of the second friction layer and to maintain a certain distance with the upper surface of the second friction layer; the first friction layer and the second friction layer can be at least in partial contact under the effect of external force, and the original distance is recovered through the effect of the space maintaining element when the external force is withdrawn; meanwhile, electric signals are outwards output through the first conducting element and the second conducting element; and in addition, the electric signals can be changed after the second friction layer is combined with substances of targets to be detected. The sensor has the advantages of self driving performance, high sensitivity, portability and the like.
Owner:BEIJING INST OF NANOENERGY & NANOSYST

Nano-sensor array

In one embodiment, a method is provided for the manufacture of a nano-sensor array. A base having a sensing region is provided along with a plurality of nano-sensors. Each of the plurality of nano-sensors is formed by: forming a first nanoneedle along a surface of the base, forming a dielectric on the first nanoneedle, and forming a second nanoneedle on the dielectric layer. The first nanoneedle of each sensor has a first end adjacent to the sensing region of the base. The second nanoneedle is separated from the first nanoneedle by the dielectric and has a first end adjacent the first end of the first nanoneedle. The base is provided with a fluidic channel. The plurality of nano-sensors and the fluidic channel are configured and arranged with the first ends proximate the fluidic channel to facilitate sensing of targeted matter in the fluidic channel.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Nano-chem-fet based biosensors

Methods of detecting a component of interest, a change in charge, a pH, a cellular response using nanosensors are provided. Nanosensors, including nanowires and nanowire arrays comprising functionalized and / or non-functionalized nanowires are provided. Nanosensors are, used for detection in cellular fragmentation, multiple concentration analysis, glucose detection, and intracellular analysis.
Owner:SHOEI CHEM IND CO LTD

Real time oil reservoir evaluation using nanotechnology

A method and system for evaluating status and response of a mineral-producing field (e.g., oil and / or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence / absence of each of two or more target molecules in the fluid, relative humidity, temperature and / or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.
Owner:NASA

Nanomagnetic detector array for biomolecular recognition

A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
Owner:HOUSTON UNIV OF

Nanorice particles: hybrid plasmonic nanostructures

A new hybrid nanoparticle, i.e., a nanorice particle, which combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, is described herein. This geometry possesses far greater structural tunability than previous nanoparticle geometries, along with much larger local field enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than presently known dielectric-conductive material nanostructures. In an embodiment, a nanoparticle comprises a prolate spheroid-shaped core having a first aspect ratio. The nanoparticle also comprises at least one conductive shell surrounding said prolate spheroid-shaped core. The nanoparticle has a surface plasmon resonance sensitivity of at least 600 nm RIU−1. Methods of making the disclosed nanorice particles are also described herein.
Owner:RICE UNIV

Nano-sensor for detecting antibiotics and preparation method and application of nano-sensor

ActiveCN104502585AResolve detectionSolve the problem of long test timeFluorescence/phosphorescenceFluorescenceNanoparticle
The invention discloses a nano-sensor for detecting antibiotics. The nano-sensor comprises gold nano-particles, wherein the surfaces of the gold nano-particles are modified with at least one kind of aptamers which can be specifically bonded with specific antibiotics through an Au-S bond, and the aptamers are labeled with a fluorescent dye. The invention aims to provide the nano-sensor capable of quickly, accurately, qualitatively and quantitatively determining one kind of antibiotics or synchronously testing the multiple kinds of antibiotics, and also provide a preparation method and application of the nano-sensor.
Owner:SUN YAT SEN UNIV

Magnetic nanosensor compositions and bioanalytical assays therefor

Disclosed are magnetic nanosensors or transducers that permit measurement of a physical parameter in an analyte via magnetic reasonance measurements, in particular of non-agglomerative assays. More particularly, in certain embodiments, the invention relates to designs of nanoparticle reagents and responsive polymer coated magnetic nanoparticles. Additionally provided are methods of use of nanoparticle reagents and responsive polymer coated magnetic nanoparticles for the detection of a stimulus or an analyte with NMR detectors.
Owner:T2 BIOSYST

Method for preparing pyramid array on monocrystalline silicon substrate

The invention relates to a method for preparing a pyramid array on a monocrystalline silicon substrate, and belongs to the technical field of manufacture of photovoltaic and semiconductor devices. The method comprises the following steps of: covering microballons in periodic arrangement on the surface of a monocrystalline silicon piece, and annealing near the glass transition temperature point of the microballoon; in oxygen atmosphere, obtaining a microballoon array in separation arrangement after etching by use of inductive coupling plasma; depositing a metallic titanium membrane on the monocrystalline silicon piece uniformly by a physical vapor deposition manner; and putting a silicon wafer with a masking film into an alkaline solution containing a surfactant for corrosion so as to obtain the pyramid array in order arrangement. The method is simple in process, short in preparation period and mature in technology; and three structures such as a positive pyramid array, an inverted pyramid array and a positive and inverted pyramid combined array can be obtained by a method for preparing a template through selecting and fine turning. The method has wide application value in the fields of photovoltaic, magnetic memory devices, nano photoelectric devices, nano sensors, surface raman enhancement and surface plasma effect and the like.
Owner:HUANGSHAN AKENT SEMICON TECH

Apparatus and Method for Microfabricated Multi-Dimensional Sensors and Sensing Systems

A universal microelectromechanical (MEMS) nano-sensor platform having a substrate and conductive layer deposited in a pattern on the surface to make several devices at the same time, a patterned insulation layer, wherein the insulation layer is configured to expose one or more portions of the conductive layer, and one or more functionalization layers deposited on the exposed portions of the conductive layer to make multiple sensing capability on a single MEMS fabricated device. The functionalization layers are adapted to provide one or more transducer sensor classes selected from the group consisting of: radiant, electrochemical, electronic, mechanical, magnetic, and thermal sensors for chemical and physical variables and producing more than one type of sensor for one or more significant parameters that need to be monitored.
Owner:SENSIRION AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products