Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2049 results about "Fluidic channel" patented technology

Fluidic channels. Fluidic micro and nanochannels are another type of post-processed CMOS devices that have a variety of applications including detection, and characterization of cells and viruses in a fluidic media and classification and sequencing of a variety of biomolecules such as proteins, carbohydrates and DNAs.

Downhole gas-liquid separation device and working method thereof

A downhole gas-liquid separation device comprises a barrel-shaped body, and a positioning wheel is fixedly installed in the body. A rotatable swirling wheel is installed on the positioning wheel and provided with spiral wheel blades, and the positioning wheel is provided with fluid channels. A lower connector is connected to the body, a diverting joint is arranged at the inner end, located in an inner cavity of the body, of the lower connector, a gas outlet channel is formed in the center of the diverting joint in a coaxial mode, and the outer side of the diverting joint is provided with liquid drainage channels. An interval is formed between the swirling wheel and the diverting joint. The downhole gas-liquid separation device is small in part number, simple in structure and lower in cost; the swirling wheel is driven to rotate when liquid passes through the swirling wheel to enable the liquid to generate centrifugal force and swirlingly flow in the inner cavity in the mode of being attached to the wall, the liquid in gas is gathered to the center, and then the liquid and the gas flow out through the liquid drainage channels formed in the outer side and the gas outlet channel formed in the center respectively, so that gas and liquid separation is achieved; accordingly, the liquid sent to a motor does not contain the gas, damage to the motor is avoided, and the service life of the motor is prolonged.
Owner:JEREH ENERGY SERVICES

Electromagnetic actuator and integrated actuator and fluid flow control valve

A magnetic device is formed from a permanent magnet generating magnetic flux, an armature which can occupy two positions between four poles and an electromagnet winding to which current can be supplied to produce a magnetic flux in one direction or the other, the flux from the winding causing the armature to move into one position and continue to remain in that position after the current flow ceases. The device can be incorporated into a fluid valve to act as a drive for opening and closing the valve. It may also serve as the drive for opening and closing electrical contacts. Monostable operation can be achieved by locating a magnetic flux shunt at one end of the armature travel. A holding solenoid may be incorporated. A pivoting armature in a fluid tight chamber comprises a fluid flow controlling device. It can adopt either of two home positions in contact with two magnetic poles and is retained by magnetic flux from a permanent magnet. Fluid can flow into and out of the chamber via a first passage. A second passage extends through one of the poles to an opening in the pole face which is covered by the armature when the latter occupies one home position but is uncovered when the armature occupies its other home position. A third fluid passage extends through and leads to a second opening in another pole, which is covered when the armature occupies its said other home position. Passages in the poles house energy storing springs each of which is compressed as the armature approaches the pole. A push rod can extend through a passage in one of the poles for conveying armature movement externally of the device.
Owner:CAMCOM

Fingerprint sensors using membrane switch arrays

A sensor for identifying fingerprints or other skin textures includes an array of cells each including a membrane switch. Each switch includes a fixed lower electrode disposed on a chip substrate, and a flexible membrane disposed over the lower electrode and capable of flexing downward to establish electrical contact between the lower electrode and an upper electrode. The upper electrode can form the membrane itself or a layer of the membrane, or can be attached to other membrane layers. Switches situated underneath skin ridges change state (e.g. are closed) by the applied pressure, while switches underneath skin valleys remain in their quiescent state (e.g. open). Adjacent switch chambers are connected by fluid tunnels which allow the passage of air between the chambers. Each chamber is substantially closed to the exterior of the sensor, such that particles from the environment cannot contaminate the switch contact surface defined between the switch electrodes. The cells are preferably not hermetically sealed, such that the pressure within the chamber interiors can stay equal to the external (atmospheric) pressure in varying environmental conditions. The membrane design of the cells according to the preferred embodiment allows improved sensor robustness, enhanced resistance to impact forces, decreased vulnerability to particle contamination, and reduced inter-cell crosstalk.
Owner:LENOVO PC INT

Microfluidic chip and manufacturing method thereof

InactiveCN102059161AIntelligent control of flow stateRapid reversible transitionLaboratory glasswaresChemical/physical/physico-chemical processesChemical compositionMicrometer
The invention relates to a microfluidic chip and a manufacturing method thereof. The microfluidic chip comprises an upper chip unit and a lower chip unit; the surfaces of the chip units are respectively provided with a liquid storing hole, a liquid channel communicated with the liquid storing holes and a microchannel communicated with the liquid channel; the upper chip unit and the lower chip unit are attached to each other and the microchannel is sealed between the two chip units; the microfluidic chip also comprises a micro valve, wherein the micro-valve main body is one of the following structures: a three-dimensional micrometer and three-dimensional nanometer hierarchical structure of polymers formed on the microchannel in array arrangement, a three-dimensional micrometer structure ofpolymers formed on the microchannel in array arrangement or a three-dimensional nanometer structure of polymers formed on the microchannel in array arrangement; the polymers can generate specific responses to an external field under the action of the external field; and the specific responses are reversibility transformation of one or more of surface chemical compositions of the polymers, the above structures and surface properties, thus realizing controllable operations for the flow state of a microfluid in the microchannel. The micro valve in the microfluidic chip is manufactured in situ and miniaturized on the microfluidic chip, thus realizing switch gradient control for the flow of the microfluid and fast switch reversibility transformation.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Structures for controlling light interaction with microfluidic devices

Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems. In some embodiments, to the optical elements comprise triangular grooves formed on or in a surface of the device. The draft angle of the triangular grooves may be chosen such that incident light normal to the surface of the device is redirected at an angle dependent upon the indices of refraction of the external medium (e.g., air) and the device material. Advantageously, certain optical elements described herein may be fabricated along with the fluidic channels of the device in one step, thereby reducing the costs of fabrication. Furthermore, in some cases the optical elements do not require alignment with a detector and, therefore, facilitate assembly and/or use by an end user.
Owner:OPKO DIAGNOSTICS

Structures for controlling light interaction with microfluidic devices

Systems and methods for improved measurement of absorbance / transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems. In some embodiments, the optical elements comprise triangular grooves formed on or in a surface of the device. The draft angle of the triangular grooves may be chosen such that incident light normal to the surface of the device is redirected at an angle dependent upon the indices of refraction of the external medium (e.g., air) and the device material. Advantageously, certain optical elements described herein may be fabricated along with the fluidic channels of the device in one step, thereby reducing the costs of fabrication. Furthermore, in some cases the optical elements do not require alignment with a detector and, therefore, facilitate assembly and / or use by an end user.
Owner:OPKO DIAGNOSTICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products