This wet compression invention with a vaporizable fluid mist demonstrates major performance improvements over the relevant art in achieving a high degree of saturation, providing sensible cooling, strongly reducing the temperature increase due to compression work, reducing excess diluent air flow for downstream combustion, reducing compression noise, and increasing the achievable compressor pressure ratio. These improvements are obtained by one or more of: high mist or overspray from a) progressive axial injection of vaporizable fluid along the streamwise compression flow path, and b) transverse vaporizable fluid delivery from stators, rotors, perforated tubes, and / or duct walls, matching the gaseous fluid flow distribution across the compressor stream; c) reducing the compressor cross-sectional flow area of downstream compressor stages relative to up-stream stages, and d) increasing the rate of downstream vaporizable fluid injection relative to the rate of upstream injection, as a function of each compressor stage pressure ratio.