Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42 results about "Conductive atomic force microscopy" patented technology

Conductive atomic force microscopy (C-AFM) or current sensing atomic force microscopy (CS-AFM) is a mode in atomic force microscopy (AFM) that simultaneously measures the topography of a material and the electric current flow at the contact point of the tip with the surface of the sample. The topography is measured by detecting the deflection of the cantilever using an optical system (laser + photodiode), while the current is detected using a current-to-voltage preamplifier. The fact that the CAFM uses two different detection systems (optical for the topography and preamplifier for the current) is a strong advantage compared to scanning tunneling microscopy (STM). Basically, in STM the topography picture is constructed based on the current flowing between the tip and the sample (the distance can be calculated depending on the current). Therefore, when a portion of a sample is scanned with an STM, it is not possible to discern if the current fluctutations are related to a change in the topography (due to surface roughness) or to a change in the sample conductivity (due to intrinsic inhomogeneities).

Probe of conducting atomic force microscope and measuring methods employing probe

The invention relates to a probe of a conducting atomic force microscope. The probe comprises: a substrate of a cantilever probe; a needle tip; and a conductive film, which is arranged at a surface of the needle tip. Besides, the material of the conductive film is graphene. Moreover, the invention provides a method that employs the probe to measure local conductivity of a semiconductor and a needle tip-free near-field optical detection method that employs the probe to measure a terahertz wave band. According to the invention, graphene is utilized, wherein the grapheme has the following characteristics that: the graphene is composed of carbon atoms and is thin to a monatomic layer; and the graphene is a semimetal two-dimensional thin material that has a zero gap; besides, the probe has advantages of good conductivity and high electron mobility; moreover, a Fermi surface can carry out self-adjustment with charging and discharging motions and a carrier injection potential is low. In addition, an electronic plasmon oscillating frequency of the graphene is just at a terahertz wave band; and the graphene has soft materials and strong stability on thermodynamics. The above-mentioned statements are physical bases on which the graphene is utilized to replace a traditional metal material as a plated film of a surface of an atomic force microscope probe, so that the above-mentioned limitations are broken through.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Vacuum atomic force microscope and using method thereof

The invention discloses a vacuum atomic force microscope and a using method thereof, belonging to the field of micro-topography detecting equipment; the microscope comprises an electron beam launching device, a secondary electron detector, a probe with a cantilever, a piezoelectric ceramics scanner and a feedback controller. When in work, electron beams are irradiated to the cantilever of the probe; as the acting force between the probe and sample atoms causes the cantilever to become deformed; a secondary electron signal changes; the acting force between a pinpoint and the sample is controlled to be constant by the signal feedback; the pinpoint scans the surface of the sample point by point and can image surface topography of the sample. The currently common optical lever does not need to be drawn into the invention; the invention overcomes design difficulty brought about by the conventional atomic force microscope applied in vacuum environment, synthesizes two nanophase material characterization methods which are the advantages of the atomic force microscope and an electronic microscope, and can realize the continuous measuring on the material from millimeter size to the sub-nanometer size.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Periodic stripe domain structure of ferroelectric thin film and method for characterizing same

The invention discloses a periodic stripe domain structure of a ferroelectric thin film and a method for characterizing the same and belongs to the technical field of micro-nano characterization. Themethod includes the following steps: preparing a bismuth ferrite thin film by pulsed laser deposition; characterizing the lattice constant of the bismuth ferrite thin film by an X-ray diffraction instrument, determining the bismuth ferrite thin film to be a rhombus phase structure, confirming good ferroelectricity and coercive voltage of the bismuth ferrite thin film by a piezoelectric butterfly curve, and characterizing the shape of the bismuth ferrite thin film by atomic force microscopy; characterizing the periodic stripe domain in the nano-ferroelectric thin film by vector piezoresponse force microscopy, and determining the three-dimensional structure of the ferroelectric thin film by a fine vector piezoelectric microscopy analytical method; and observing the conduction of the domain wall of the stripe domain by using conductive atomic force microscopy. The method for preparing the ferroelectric thin film provided by the present invention can be used for a nonvolatile and high-density ferroelectric random access memory. Further, the provided characterization method can accurately provide the three-dimensional domain structure and the domain wall conduction of the periodic stripe domain, and provides a solution for the development of high-density ferroelectric memory devices and characterization detection.
Owner:HUAIYIN INSTITUTE OF TECHNOLOGY

Method for measuring mobility of graphene microcell with semiconductor as substrate

The invention provides a method for measuring the mobility of a graphene microcell with a semiconductor as a substrate. The method comprises steps of coating the surface of the semiconductor substrate with graphene to form a graphene microcell and disposing a conductive probe in contact with the graphene microcell; connecting the conductive probe with a scanning Kelvin probe force microscope to measure the actual work function of the graphene microcell to obtain a barrier height [Phi]Bn0 between the graphene microcell and the semiconductor substrate; connecting the conductive probe with a conductive atomic force microscope to collect a current-voltage curve of the graphene microcell; analyzing and fitting the current-voltage curve according to the barrier height [Phi]Bn0 between the graphene microcell and the semiconductor substrate and a hot electron emission model to obtain the effective contact radius of the conductive probe and the graphene microcell; and calculating the value of the graphene microcell mobility [mu] based on the effective contact radius of the conductive probe and the graphene microcell and the actual contact radius. The method can measure the mobility of the graphene microcell with any semiconductor as the substrate.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Solid barrier needle point contact type scanning tunnel microscope

The invention discloses a solid barrier needle point contact type scanning tunnel microscope. A conductive probe is formed by a conductive probe body and a conductive needle point arranged on the free end of the conductive probe body, wherein at least one layer of solid dielectric film is covered on the conductive needle point to form a solid barrier needle point. During an imaging process, the height of a sample bench or / and a probe bench is adjusted to allow the solid barrier needle point to scan in a way of contacting a sample, and the obtained tunneling current passing through the solid barrier needle point is input to a scanning tunnel microscope testing system and / or the current amplification circuit of a conductive atomic force microscope testing system. Obtained output and corresponding coordinate information of the tunneling current are input to the scanning tunnel microscope testing system and / or a data processing and imaging module of the conductive atomic force microscope testing system, and the electronic state density distribution information of a sample surface is obtained. The novel working mode of the scanning tunnel microscope is created, the anti-vibration capability and success rate are high, the cost is low and the resolution is high.
Owner:HENAN NORMAL UNIV

Preparation method of semiconductor nanowire array with optimal photoelectric efficiency

The invention discloses a method for preparing a semiconductor nanowire array with optimal photoelectric performance. The method first deposits a gold film by thermal evaporation and anneals to form random and uniformly distributed catalyst particles, and then according to the prepared III-V nanowire material system, select the optimal V/III beam current ratio, grow a series of nanowire array samples at different substrate temperatures, and then use a conductive atomic force microscope to perform statistical evaluation of the vertical photoelectric properties of a single nanowire, and finally The optimal preparation conditions were determined according to the average optoelectronic properties of single nanowires. This method is suitable for catalytic molecular beam epitaxy to grow III-V nanowire arrays such as gallium arsenide, and uses a direct, fast and simple method to evaluate and determine the optimal growth conditions of nanowire arrays through metal catalysis, and then prepares a arrays of semiconducting nanowires with optimal optoelectronic efficiency, and thus, the method is of great interest for the fabrication of high-efficiency solar cells and ultrasensitive photodetectors.
Owner:SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI

Characterization method for conductivity regulation in ferroelectric nano dot array

The invention discloses a characterization method for conductivity regulation in a ferroelectric nano dot array, and belongs to the technical field of nano ferroelectric material preparation and micro-nano characterization. A ferroelectric film is etched by an ion beam to obtain a high-density nano dot array; a domain structure of a ferroelectric topological domain is obtained by means of vector piezoelectric power microscopy characterization; a conductive atomic force microscope is used for observing conductive channels in the nanodots, that the conductive area in a single nanodot is dozens of nanometers according to a two-dimensional current image, and the conductive channels have the characteristic similar to metal conductivity; and a piezoelectric force microscope and a conductive atomic force microscope are combined to obtain regulation of polarization on conductivity. The method can be used for developing a nonvolatile and high-density ferroelectric random access memory; the central domain structure of the nanodot provides a scheme for researching the ferroelectric topological domain and a topological material; and the conductivity of the nanodots can be regulated through polarization inversion, regulation control can be visualized through the provided characterization method, and the visibility and reliability of data are improved.
Owner:HUAIYIN INSTITUTE OF TECHNOLOGY

Probe of conducting atomic force microscope and measuring methods employing probe

The invention relates to a probe of a conducting atomic force microscope. The probe comprises: a substrate of a cantilever probe; a needle tip; and a conductive film, which is arranged at a surface of the needle tip. Besides, the material of the conductive film is graphene. Moreover, the invention provides a method that employs the probe to measure local conductivity of a semiconductor and a needle tip-free near-field optical detection method that employs the probe to measure a terahertz wave band. According to the invention, graphene is utilized, wherein the grapheme has the following characteristics that: the graphene is composed of carbon atoms and is thin to a monatomic layer; and the graphene is a semimetal two-dimensional thin material that has a zero gap; besides, the probe has advantages of good conductivity and high electron mobility; moreover, a Fermi surface can carry out self-adjustment with charging and discharging motions and a carrier injection potential is low. In addition, an electronic plasmon oscillating frequency of the graphene is just at a terahertz wave band; and the graphene has soft materials and strong stability on thermodynamics. The above-mentioned statements are physical bases on which the graphene is utilized to replace a traditional metal material as a plated film of a surface of an atomic force microscope probe, so that the above-mentioned limitations are broken through.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

A Characterization Method of Periodic Stripe Domain Structure of Ferroelectric Thin Films

ActiveCN110634871BLarge polarization valueImprove ferroelectric propertiesSolid-state devicesSemiconductor devicesPiezoelectric force microscopyConductive atomic force microscopy
The invention discloses a periodic striped domain structure of a ferroelectric thin film and a characterization method thereof, belonging to the technical field of micro-nano characterization, and the method comprises the following steps: preparing a bismuth ferrite thin film by pulse laser deposition; characterizing it by an X-ray diffractometer The lattice constant is determined to be a rhomboid phase structure, the piezoelectric butterfly curve is used to confirm its ferroelectricity and coercive voltage, and its morphology is characterized by atomic force microscopy; the periodic stripes in nanoferroelectric thin films are characterized by vector piezoelectric force microscopy Banded domains, the three-dimensional domain structure was determined by fine vector piezoelectric force microscopy analysis method; the domain walls of the striped domains were observed to conduct electricity by using conductive atomic force microscopy. The ferroelectric thin film preparation method provided by the present invention can be used in non-volatile, high-density ferroelectric random access memory; at the same time, the provided characterization method can accurately provide the three-dimensional domain structure and domain wall of the periodic strip domain Conduction; provide solutions for the development and characterization of high-density ferroelectric memory devices.
Owner:HUAIYIN INSTITUTE OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products