Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

11948results about "Material resistance" patented technology

Combined lancet and electrochemical analyte-testing apparatus

InactiveUS20020130042A1Easy to takeReduces and eliminates disposal issueImmobilised enzymesBioreactor/fermenter combinationsAnalyteDisplay device
An apparatus for detection and quantitation of an electrochemically-detect- able analyte, such as glucose, in blood or interstitial fluid includes a meter unit, a lancet and an electrochemical sensor. Of these components, the meter is preferably reusable, while the lancet and the electrochemical sensor are preferably incorporated in assemblies intended for single-use. The meter unit has a housing, within which a lancet is engaged with a mechanism for moving then lancet; a connector disposed within the housing for engaging an electrochemical sensor specific for the analyte and transmitting a signal indicative of the amount of analyte, and a display operatively-associated with a connector for displaying the amount of the analyte to user. The electrochemical sensor is adapted for detection of a particular analyte. In addition, the electrochemical sensor has an absorptive member for uptake of a sample of blood or interstitial fluid. In one version, the lancet moves from a initial position to a piercing position in which skin of the user is pierced and optionally back to a retracted position. The electrochemical sensor is disposed such that the absorptive member takes up a sample from the pierced skin of the user when it is pierced by the lancet without movement of the apparatus. In an alternative version, the lancet is a hollow cannula through which blood or interstitial fluid is transported from the puncture site to an absorbent portion of the electrochemical sensor. In either version, the apparatus provides single-step operation in which sample acquisition and analysis occur as a result of the single action of pressing the apparatus against the users skin.
Owner:LIFESCAN IP HLDG LLC

System and method for analyte measurement

A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
Owner:ROCHE DIABETES CARE INC +1

Characterization of individual polymer molecules based on monomer-interface interactions

The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Sensor platform using a horizontally oriented nanotube element

Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under certain embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning. Under certain embodiments, a large-scale array includes multiple sensors.
Owner:NANTERO

Combined lancet and electrochemical analyte-testing apparatus

InactiveUS20050011759A1Easy to takeReduces and eliminates disposal issueImmobilised enzymesBioreactor/fermenter combinationsTissue fluidDisplay device
An apparatus for detection and quantitation of an electrochemically-detectable analyte, such as glucose, in blood or interstitial fluid includes a meter unit, a lancet and an electrochemical sensor. Of these components, the meter is preferably reusable, while the lancet and the electrochemical sensor are preferably incorporated in assemblies intended for single-use. The meter unit has a housing, within which a lancet is engaged with a mechanism for moving then lancet; a connector disposed within the housing for engaging an electrochemical sensor specific for the analyte and transmitting a signal indicative of the amount of analyte, and a display operatively-associated with a connector for displaying the amount of the analyte to user. The electrochemical sensor is adapted for detection of a particular analyte. In addition, the electrochemical sensor has an absorptive member for uptake of a sample of blood or interstitial fluid. In one version, the lancet moves from a initial position to a piercing position in which skin of the user is pierced and optionally back to a retracted position. The electrochemical sensor is disposed such that the absorptive member takes up a sample from the pierced skin of the user when it is pierced by the lancet without movement of the apparatus. In an alternative version, the lancet is a hollow cannula through which blood or interstitial fluid is transported from the puncture site to an absorbent portion of the electrochemical sensor. In either version, the apparatus provides single-step operation in which sample acquisition and analysis occur as a result of the single action of pressing, the apparatus against the users skin.
Owner:LIFESCAN IP HLDG LLC

Wetness monitoring system

The present invention relates to a wetness monitoring system that includes a data collection device that sends wetness measurement data to a central computer that detects changes in wetness measurement data caused by the presence of urine or other dielectric fluids. The data collection device includes a semi-reusable sensor and reusable data collector that are worn on a garment of the person. The data collector includes an internal power source so that the person can live a normal ambulatory life. The data collector has an electrical circuit that uses the changing resistance characteristics in the sensor to gather wetness measurement data. The data collector periodically generates and transmits a signal containing the actual wetness measurement data. The signals are coded to identify the particular data collector or person sending the signal. The data collector is programmed to conserve power by sending signals less frequently during periods when the sensor is clearly dry. Signals are sent more frequently when the sensor is damp or a wetness event may have occurred. The central computer receives the signals containing the wetness measurement data and compares the measurement data to an adjustable wetness sensitivity level to determine if a wetness event has occurred. When the central computer determines that a wetness event has occurred, the computer displays the name of the particular person wearing the data collector and the approximate time that the wetness event occurred. The system then pages an appropriate healthcare worker to inform them that the particular individual needs attention and tracks the approximate response times to ensure that the patient is continuously receiving prompt care.
Owner:RF TECH

Multidimensional bioelectrical tissue analyzer

A method and apparatus that use complex impedance measurements of tissue in human or animal bodies for the detection and characterization of medical pathologies is disclosed. An analysis of the complex impedance measurements is performed by a trained evaluation system that uses a nonlinear continuum model to analyze the resistive, capacitive, and inductive measurements collected from a plurality of sensing electrodes. The analysis of the impedance measurements results in the construction of a multidimensional space that defines the tissue characteristics, which the trained evaluation system uses to detect and characterize pathologies. The method and apparatus are sufficiently general to be applied to various types of human and animal tissues for the analysis of various types of medical pathologies.
Owner:DELPHINUS MEDICAL TECH

Analyte test sensor and method of manufacturing the same

An analyte test sensor for use in measuring the concentration of a particular analyte in a test sample includes a non-conductive substrate, a reference electrode deposited on the substrate, a working electrode deposited on the substrate and a compensation electrode deposited on the substrate. The compensation electrode is provided with a resistive ladder and is designed to correct for test result inaccuracies which are the result of variances in the manufacturing of the test sensor. Specifically, in one embodiment, the compensation electrode corrects for test result inaccuracies in an analog manner by shunting a portion of the working current away from working electrode. In another embodiment, the compensation electrode corrects for test result inaccuracies in a digital manner by providing a calibration code which is proportional its resistance value. A batch of analyte test sensors are preferably manufactured in the following manner. An initial batch of the test sensors is constructed. Then, a limited sampling of the sensors is tested for accuracy using a control sample. Based on the test results, the resistance value of the compensation electrode for each remaining sensor in the batch is adjusted accordingly.
Owner:ABBOTT DIABETES CARE INC

Method and apparatus for correcting ambient temperature effect in biosensors

A method and apparatus are provided for correcting ambient temperature effect in biosensors. An ambient temperature value is measured. A sample is applied to the biosensors, then a current generated in the test sample is measured. An observed analyte concentration value is calculated from the current through a standard response curve. The observed analyte concentration is then modified utilizing the measured ambient temperature value to thereby increase the accuracy of the analyte determination. The analyte concentration value can be calculated by solving the following equation:where G1 is said observed analyte concentration value, T2 is said measured ambient temperature value and I1, I2, S1, and S2 are predetermined parameters.
Owner:ASCENSIA DIABETES CARE HLDG AG +1

Gastric treatment and diagnosis device and method

InactiveUS20040088023A1Minimize stressReduce potential tissue damageCannulasSurgical needlesStomach wallsGastric Disorders
A device, system and method for diagnosing and treating gastric disorders is provided. A functional device resides within the patient's stomach and is secured to the stomach wall by an attachment device. The functional device may be a sensor for sensing various parameters of the stomach or stomach environment, or may be a therapeutic delivery device. The functional device in one embodiment provides a device, system and method for gastric electrical stimulation where stimulating electrodes are secured to the wall of the stomach by the attachment device or otherwise. A preferred device includes: at least one stimulating electrode in electrical contact with the stomach wall; an electronics unit containing the electronic circuitry of the device; and an attachment mechanism for attaching the device to the stomach wall. The functional devices may be programmed to respond to sensed information or signals. An endoscopic delivery system delivers the functional device through the esophagus and into the stomach where it is attached the stomach wall. The endoscopic instruments attach or remove the attachment devices and functional devices from the stomach and may be used to assist in determining the optimal attachment location.
Owner:INTRAPACE

Method of processing a substrate

The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.
Owner:RGT UNIV OF CALIFORNIA

Method of forming sensor for detecting gases and biochemical materials, integrated circuit having the sensor, and method of manufacturing the integrated circuit

InactiveUS20080121946A1Characteristics degradation of an integrated circuit caused by heating the unit devices when forming the sensor can be preventedSemiconductor/solid-state device manufacturingNanosensorsMOSFETNano structuring
A method of forming a sensor for detecting gases and biochemical materials that can be fabricated at a temperature in a range from room temperature to 400° C., a metal oxide semiconductor field effect transistor (MOSFET)-based integrated circuit including the sensor, and a method of manufacturing the integrated circuit are provided. The integrated circuit includes a semiconductor substrate. The sensor for detecting gases and biochemical materials includes a pair of electrodes formed on a first region of the semiconductor substrate, and a metal oxide nano structure layer formed on surfaces of the pair electrodes. A heater is formed to perform thermal treatment to re-use the material detected in the metal oxide nano structure layer. Also, a signal processor is formed by a MOSFET to process a predetermined signal obtained from a quantity change of a current flowing through the pair of electrodes of the sensor. To form the sensor, the metal oxide nano structure layer is formed on surfaces of the pair of electrodes at a temperature in a range from room temperature to 400° C.
Owner:ELECTRONICS & TELECOMM RES INST

Apparatus and method for detecting biomolecules

Provided are an apparatus and method for detecting biomolecules. The apparatus includes a FET having a substrate, a source electrode, a drain electrode, a channel region between the source and drain electrodes, and probe molecules fixed to the channel region, wherein the source and drain electrodes are separated on the substrate, a microfluid supplier selectively supplying one of a reference buffer solution of low ionic concentration and a reaction solution of high ionic concentration containing target molecules, to the channel region of the FET to which the probe molecules are fixed, and a biomolecule detector detecting the target molecules by measuring a first current value of the channel region of the FET, and a second current value of the channel region of the FET to which the target molecules and the probe molecules that bind to each other in the reaction solution of high ionic concentration are fixed.
Owner:ELECTRONICS & TELECOMM RES INST

Method and apparatus for detecting moisture in building materials

A moisture sensor system is described. In one embodiment, the system provides an adjustable threshold level for the sensed moisture level. The adjustable threshold allows the moisture sensor to adjust to ambient conditions, aging of components, and other operational variations while still providing a relatively sensitive detection capability. In one embodiment, the adjustable threshold moisture sensor is used in an intelligent sensor system that includes one or more intelligent sensor units and a base unit that can communicate with the moisture sensor units. When one or more of the moisture sensor units detects a excess moisture the moisture sensor unit communicates with the base unit and provides data regarding the moisture condition. The base unit can contact a supervisor or other responsible person by a plurality of techniques, such as, telephone, pager, cellular telephone, Internet (and / or local area network), etc. In one embodiment, one or more wireless repeaters are used between the moisture sensor units and the base unit to extend the range of the system and to allow the base unit to communicate with a larger number of sensors.
Owner:GOOGLE LLC

Nanoscale wires and related devices

The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Microfluidic analytical system with position electrodes

A microfluidic analytical system for monitoring an analyte (for example, glucose) in a liquid sample (e.g., ISF) includes an analysis module with at least one micro-channel for receiving and transporting a liquid sample, at least one analyte sensor for measuring an analyte in the liquid sample and at least one position electrode. The analyte sensor(s) and position electrode(s) are in operative communication with the micro-channel. The microfluidic system also includes a meter configured for measuring an electrical characteristic (such as impedance or resistance) of the position electrode(s). Moreover, the measured electrical characteristic is dependent on the position of the liquid sample in the micro-channel that is in operative communication with the position electrode for which an electrical characteristic is measured.
Owner:LIFESCAN IP HLDG LLC +2

Sensing system for monitoring the structural health of composite structures

A sensing system for use in monitoring the structural health of a structure such as a polymeric matrix composite structure is provided. The system includes a sensor formed from a conductive ink containing carbon nanofibers and a polymeric resin, and a data acquisition system for acquiring and evaluating data from the sensor. The conductive ink may be applied directly to the structure to be monitored in the form of a grid pattern. Damage to the structure may be detected by measuring changes in resistance values detected from the sensor.
Owner:UNIV OF DAYTON

Remote-control self-navigation water quality sampling and analyzing device

A remote-control self-navigation water quality sampling and analyzing device belongs to the field of water quality monitoring, sampling and analyzing system integration in environmental protection, and in particular relates to self-navigation running and water quality sampling and analyzing detection technology. The device comprises a carrier [1], a wireless communication module [2], a sampling and analyzing module [3], an environmental sensor module [4], a remote monitoring platform [5], a self-navigation system [6], a control module [7], and the like. The device has the characteristics of remote monitoring, automatic acquisition, sample dividing storage, automatic record of related information and the like in the overall process of sampling water quality, and simultaneously has the advantage of quick and accurate acquisition of time and spacial information; and the water quality analyzing module of the device can acquire partial water quality analyzing results in the first time, so the device can greatly improve the accuracy, authenticity, timeliness, intellectuality and monitoring efficiency of water quality field sampling, can reduce sampling risk and cost, and has significance on water area water quality monitoring.
Owner:CENT TESTING INT GRP CO LTD +2

Personal care products with microchemical sensors for odor detection

Absorbent articles comprising one or more sensors capable of detecting the presence of a body waste in the absorbent article are described. In particular, the absorbent articles comprise at least one chemiresistor capable of detecting the presence of volatile organic compounds associated with a body waste. When a body waste is detected, an indicator means signals a caregiver and / or a user of the absorbent article that an insult has occurred
Owner:KIMBERLY-CLARK WORLDWIDE INC

Analyte test sensor and method of manufacturing the same

An analyte test sensor for use in measuring the concentration of a particular analyte in a test sample includes a non-conductive substrate, a reference electrode deposited on the substrate, a working electrode deposited on the substrate and a compensation electrode deposited on the substrate. The compensation electrode is provided with a resistive ladder and is designed to correct for test result inaccuracies which are the result of variances in the manufacturing of the test sensor. Specifically, in one embodiment, the compensation electrode corrects for test result inaccuracies in an analog manner by shunting a portion of the working current away from working electrode. In another embodiment, the compensation electrode corrects for test result inaccuracies in a digital manner by providing a calibration code which is proportional its resistance value. A batch of analyte test sensors are preferably manufactured in the following manner. An initial batch of the test sensors is constructed. Then, a limited sampling of the sensors is tested for accuracy using a control sample. Based on the test results, the resistance value of the compensation electrode for each remaining sensor in the batch is adjusted accordingly.
Owner:ABBOTT DIABETES CARE INC

Methods and devices for characterizing duplex nucleic acid molecules

Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.
Owner:RGT UNIV OF CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products