Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

478 results about "Bismuth ferrite" patented technology

Bismuth ferrite (BiFeO₃, also commonly referred to as BFO in materials science) is an inorganic chemical compound with perovskite structure and one of the most promising multiferroic materials. The room-temperature phase of BiFeO3 is classed as rhombohedral belonging to the space group R3c. It is synthesized in bulk and thin film form and both its antiferromagnetic (G type ordering) Néel temperature (approximately 653 K ) and ferroelectric Curie temperature are well above room temperature (approximately 1100K) .

Rare earth/alkaline earth metal and transition metal doped bismuth ferrite nano multiferroic material and preparation method thereof

The invention discloses a rare earth/alkaline earth metal and transition metal doped bismuth ferrite nano multiferroic material, and the chemical formula is Bi1-xRxFe1-yMyO3, wherein R is rare earth metal or alkaline earth metal, M is transition metal, x is not less than 0 and not more than 0.30, and y is not less than 0 and not more than 0.02. The preparation method has the steps of taking ferric nitrate, bismuth nitrate, rare earth/alkaline earth metal oxide or nitrate and transition metal nitrate as raw materials, taking ethylene glycol as a solvent, or using a specific additive for matching, mechanically stirring, forming even ethylene glycol solution, then aging at room temperature, evaporating and drying the obtained solution at the temperature of 160-250 DEG C, and carrying out thermal treatment at lower temperature for obtaining rare earth/alkaline earth metal A-site doped, transition metal B-site doped and rare earth/alkaline earth metal A-site and transition metal B-site co-doped bismuth ferrite nanoparticles of 20-100nm. The prepared nano multiferroic material has stable crystal quality, thereby having extensive application prospects in the fields of information storage, magnetic sensors of spin electronic devices, capacitor-inductor integrated devices and the like.
Owner:EAST CHINA NORMAL UNIV

Bismuth ferrite nano fiber material and preparation method thereof

The invention discloses bismuth ferrite nano fiber and a preparation method thereof. The preparation method of the bismuth ferrite nano fiber comprises the following steps: 1) using bismuth nitrate or a hydrate thereof and iron nitrate or a hydrate thereof as raw materials, dissolving the two raw materials in a solvent, adding a complexing agent, stirring to obtain bismuth ferrite sol, then adding a polymer as a spinning aid in the bismuth ferrite sol, and stirring evenly to obtain a precursor solution; 2) performing electrostatic spinning of the precursor solution to obtain bismuth ferrite precursor fiber; and 3) performing heat treatment of the bismuth ferrite precursor fiber to remove the polymer to obtain the bismuth ferrite nano fiber. In the BiFeO3 (bismuth ferrite) nano fiber prepared by the preparation method, crystal grains of the fiber are arranged along the axial direction to form a bamboo-joint-like structure. The bismuth ferrite nano fiber has a narrow forbidden bandwidth (2.1-2.3 eV), a high utilization rate of visible light, a large specific surface area and few crystal boundaries and crystal faces, can effectively improve the separation of photogenerated carriers and reduce the recombination rate of photogenerated electrons and holes, has a high quantum efficiency, and shows more excellent photocatalytic properties than nanoparticles.
Owner:TSINGHUA UNIV

Method for degrading organic waste water by photo-assisted activation of potassium hydrogen persulfate through bismuth ferrite

The invention discloses a method for degrading organic waste water by photo-assisted activation of potassium hydrogen persulfate through bismuth ferrite, belonging to the technical field of waste water treatment. A perovskite structure BiFeO3 in the invention has a spherical morphology and is prepared by adding a certain amount of a surface active agent under hydrothermal conditions; the specific surface area is high; and the prepared BiFeO3 self can degrade organic pollutants by photocatalysis under the irradiation of visible light. According to the method disclosed by the invention, BiFeO3 is applied to degrading the organic pollutants by activating potassium hydrogen persulfate; the methyl orange degradation rate within 15 min is 94%; the methyl blue degradation rate within 40 min is 90%; the rhodamine degradation rate within 40 min is 65%; by means of combined use of BiFeO3 and potassium hydrogen persulfate, the organic pollutants are oxidized and degraded; the organic pollutants can be effectively degraded under better illumination conditions; the organic pollutants can also be effectively oxidized and degraded without light or under poor illumination conditions; and therefore, the method has good application prospect.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY

Bismuth ferrite microsphere photocatalyst with hollow structure and preparation method thereof

The invention belongs to a catalyst technology which relates to a bismuth ferrite microsphere photocatalyst with a hollow structure and a preparation method thereof. The defects of large grain diameter of a catalyst, small specific surface area, poor adsorption of the molecules of a pollutant and small photocatalytic activity exist in the prior art. The molecular formula of the bismuth ferrite microsphere photocatalyst with the hollow structure is BiFeO3, the grain diameter is 1.0 to 2.0mum, the thickness of the ball wall is 100 to 200nm, and the specific surface area is 7.2 to 28.1m2/g. The preparation method comprises the following steps of: dissolving bismuth salt and ferric salt into a mixed alcohol solution of absolute ethyl alcohol and glycerol, adding citric acid and mixing evenly; dispersing by ultrasonic sound, putting into a stainless steel hydrothermal kettle and carrying out thermal ageing by a solvent; and drying an ageing product and calcining to prepare the bismuth ferrite microsphere photocatalyst with the hollow structure. The invention has the advantages that raw materials are cheap and are easy to obtain; the preparation process is simple; the bismuth ferrite microsphere photocatalyst has uniform grain diameter and large specific surface area; the photocatalytic activity is enhanced; and the catalyst can be repeatedly used.
Owner:SHANGHAI NORMAL UNIVERSITY

Method for preparing bismuth titanate-barium titanate powder by hydrothermal method

The invention provides a method for preparing bismuth titanate-barium titanate powder by hydrothermal method. The method is characterized by belonging to the hydrothermal synthesis technique and the field of functional ceramics. The method comprises the following steps of: preparing KOH and deionized water into mineralizer solution of which the concentration is 4 to 10mol / L; blending Bi(NO3)3.5H2O, Fe(NO3)3.9H2O, BaCl2 and TiCl4, which serve as raw materials, according to the following chemical formula: xBiFeO3-(1-x)BaTiO3 (x is more than or equal to 0.1 and less than or equal to 0.9), addinghydrochloric acid and the deionized water dropwise into the raw materials, and uniformly stirring to completely dissolve the raw materials; slowly adding the mixture into the KOH mineralizer solutiondropwise, and uniformly stirring to obtain fulvous precursor solution; and adding the precursor solution into a reactor, putting the reactor in a 200 DEG C oven for keeping the temperature for 6 to 36 hours, and naturally cooling and filtering to the reactor to obtain the reaction product, namely the bismuth titanate-barium titanate powder. The bismuth titanate-barium titanate powder solid solution powder prepared by the invention has the advantages of good crystallization, uniform grain distribution, simple process flow, short reaction time and energy conservation.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method for high resistivity bismuth ferric-barium titanate solid solution magnetoelectricity ceramic material

The present invention discloses a preparation method for a high resistivity bismuth ferric-barium titanate solid solution magnetoelectricity ceramic material. The method comprises the following steps: 1) based on a general formula of a ceramic material, weighing raw materials according to a stoichiometric ratio, placing the raw materials in a ball mill to carry out wet milling and mixing, and drying; 2) placing the mixed powder in a box type high temperature electric furnace to carry out pre-synthesis; 3) carrying out coarse crushing, wet milling, and fine crushing for the pre-synthesized material, then drying, carrying out mixing and pelletizing for the dried powder and a binder, then carrying out pressing to prepare a thin disc biscuit; 4) carrying out heat preservation and binder removing for the biscuit; 5) carrying out sintering and heat preservation for the binder-removed biscuit to obtain the bismuth ferric-barium titanate solid solution magnetoelectricity ceramic material. According to the present invention, the bismuth ferric-barium titanate solid solution magnetoelectricity ceramic material of the present invention has characteristics of a complete perovskite structure and excellent electrical insulation property, the Curie temperature of the ferroelectricity material is more than 350 DEG C, the Curie temperature of the ferromagnetic material (the anti-ferromagnetic material) is more than 350 DEG C, the room temperature remanent polarization Pr is more than 18 muC / cm<2>, the remanent magnetization Mr is 0.49 emu / g, such that the multiferroic material with the high magnetoelectric coupling coefficient has the application and development value.
Owner:XI AN JIAOTONG UNIV

High-voltage-withstanding, low-electric-leakage and high-polarization strength bismuth ferrite thin film and preparation method thereof

The invention relates to a high-voltage-withstanding, low-electric-leakage and high-polarization strength bismuth ferrite thin film and a preparation method thereof. The high-voltage-withstanding, low-electric-leakage and high-polarization strength bismuth ferrite thin film comprises a base body, a bottom electrode, a bismuth ferrite dielectric layer and a top electrode, a mono-crystal oxide semiconductor substrate with lattice constant close to that of the bismuth ferrite is used as the base body, the bottom electrode is a conductive oxide thin film, and the top electrode is a metal thin film point electrode. The bottom electrode is deposited on the base body in a coaxial sputtering mode, then the bismuth ferrite dielectric layer is deposited on the bottom electrode in an off-axis sputtering mode, and at last the top electrode is deposited on the bismuth ferrite dielectric layer so that the thin film can be prepared. The prepared BiFeO3 thin film is in a rhombohedral shape and achieves height orientation, a ferroelectric hysteresis loop with good rectangularity is achieved under the room temperature, the intensity of polarization is high, the intensity of magnetization can reach 100 -110 micro coulombs / cm<2>, the voltage withstanding performance is good, and the maximum withstand voltage can achieve 50 v.
Owner:欧阳俊

Ferroelectric photovoltaic device and preparation method of ferroelectric photovoltaic device

The invention discloses a ferroelectric photovoltaic device which comprises an upper electrode, a lower metal electrode and a ferroelectric material between the two electrodes. The ferroelectric material is lead lanthanum zirconate titanate (PLZT), lead zirconate titanate (PZT), barium titanate (BTO) or bismuth ferrite oxide (BFO), etc., the upper electrode is made of a transparent electrode material such as indium tin oxide (ITO) or aluminum doped zinc oxide (AZO), and the lower metal electrode is made of the metal with a low work unction such as Ag, Al or Mg. The invention also discloses a preparation method of the ferroelectric photovoltaic device. According to the invention, the photovoltaic characteristic of this kind of ferroelectric photovoltaic device can be improved through material design and energy band engineering based on the photoelectric effect of the metal with the low work function and the photovoltaic effect of the ferroelectric material; the light response wavelength of the traditional broad-band gap ferroelectric photovoltaic device can be extended from the range of ultraviolet light to the range of visible light; and the application field of the ferroelectric photovoltaic device can be enlarged.
Owner:SUZHOU UNIV

Method for establishing photo-Fenton system for tetracycline degradation based on composite bismuth ferrite material

The invention relates to method for establishing a photo-Fenton system for tetracycline degradation based on a composite bismuth ferrite material. The method specifically comprises the following steps that 1, bismuth nitrate and ferric chloride are added to a nitrate solution, stirring is performed achieve dissolution, then a sodium hydroxide solution A is dropwise added, a pH value is regulated to be 9-10, and a mixed reaction solution is prepared; 2, graphite oxide is added to the mixed reaction solution, and ultrasonic operation is performed to obtain the co-precipitate of iron hydroxide, hydroxide bismuth and graphene; 3, the co-precipitate is centrifugally cleaned with pure water for several times, then a sodium hydroxide solution B is added to the co-precipitate to make the co-precipitate completely dissolved, and the co-precipitate is transferred to a hot water kettle for hydrothermal reaction; 4, the composite material is put in the Fenton system for tetracycline wastewater degradation. Compared with the prior art, the preparation method is simple, the controllability is good, the pollutant degradation efficiency is high, meanwhile the material stability is good, and the method can be repeatedly adopted, is low in cost and has a very good application prospect.
Owner:TONGJI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products