Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

173 results about "Ionic radius" patented technology

Ionic radius, rᵢₒₙ, is the radius of an atom's ion in ionic crystals structure. Although neither atoms nor ions have sharp boundaries, they are sometimes treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice. Ionic radii are typically given in units of either picometers (pm) or angstroms (Å), with 1 Å = 100 pm. Typical values range from 30 pm (0.3 Å) to over 200 pm (2 Å).

Method of manufacturing chemically strengthened glass plate

[Subject]
An object of the present invention is to provide a method for manufacturing a chemically strengthened glass plate having a high surface compressive stress with high efficiency using a soda-lime glass, the composition of which is not particularly suited for chemical strengthening.
[Solution]
The present invention provides a method of manufacturing a chemically strengthened glass plate by ion-exchanging a glass base plate to replace alkali metal ions A that are the main alkali metal ion component of the glass base plate with alkali metal ions B having a larger ionic radius than the alkali metal ions A at a surface of the glass base plate,
    • the unexchanged glass base plate made of a soda-lime glass,
    • the method including:
    • a first step of contacting the glass base plate with a first salt containing the alkali metal ions A, the first salt containing the alkali metal ions A at a ratio X, as expressed as a molar percentage of total alkali metal ions, of 90 to 100 mol %;
    • a second step of contacting the glass plate with a second salt containing the alkali metal ions B after the first step, the second salt containing the alkali metal ions A at a ratio Y, as expressed as a molar percentage of the total alkali metal ions, of 0 to 10 mol %; and
    • a third step of contacting the glass plate with a third salt containing the alkali metal ions B after the second step, the third salt containing the alkali metal ions B at a ratio Z, as expressed as a molar percentage of the total alkali metal ions, of 98 to 100 mol %.
Owner:CENT GLASS CO LTD

Multi-element in-situ co-doped ternary material precursor as well as preparation method and application thereof

The invention discloses a multi-element in-situ co-doped ternary material precursor as well as a preparation method and an application thereof. The chemical formula of the precursor is (NixCoyMnz)(1-a-c)MaNc(OH)(2+k), wherein x is larger than or equal to 1/3 and smaller than or equal to 0.9, y is larger than 0 and smaller than or equal to1/3, z is larger than 0 and smaller than or equal to 0.4, the sum of x, y and z is 1, a is larger than or equal to 0.0001 and smaller than or equal to 0.01, and c is larger than or equal to 0.0001 and smaller than or equal to 0.01; radius of a doped ion M is close to that of the lithium ion, and M is selected from one or more of Mg<2+>, Zn<2+>, Zr<4+>, Nb<5+>, Ta<4+>, In<3+>, Sc<3+>, Y<3+>, Ce<4+> and Gd<3+>; radius of a doped ion N is close to that of metal ions Mn and Co in the ternary material, and N is selected from one or more of Al<3+>, Ti<4+>, Ge<4+>, W<6+> and V<5+>. In the preparation process of the ternary material precursor, two kinds metalions with different radii are introduced in situ, so that the doped metal ions are uniformly distributed in a precursor phase, and uniform mixing on the atomic grade is realized. The two kinds of metal ions with different radii are doped in different positions, cell parameters have coordinated variation, so that not only can a lithium ion transmission channel be expanded, but also good lattice structure of the ternary material can be kept, and the ternary material with excellent electrochemical performance is obtained.
Owner:圣戈莱(北京)科技有限公司

Single crystal heat treatment method

The present invention provides a single crystal heat treatment method, having a step of heating a single crystal of a cerium-doped silicate compound represented by any of general formulas (1) to (4) below in an oxygen-containing atmosphere Y2-(x+y)LnxCeySiO5  (1) (wherein Ln represents at least one elemental species selected from a group consisting of elements belonging to the rare earth elements, x represents a numerical value from 0 to 2, and y represents a numerical value greater than 0 but less than or equal to 0.2) Gd2-(z+w)LnzCewSiO5  (2) (wherein Ln represents at least one elemental species selected from a group consisting of elements belonging to the rare earth elements, z represents a numerical value greater than 0 but less than or equal to 2, and w represents a numerical value greater than 0 but less than or equal to 0.2) Gd2-(p+q)LnpCeqSiO5  (3) (wherein Ln represents at least one elemental species selected from a group consisting of Dy, Ho, Er, Tm, Yb, Lu, Y and Sc, which are rare earth elements having an ionic radius smaller than Tb, p represents a numerical value greater than 0 but less than or equal to 2, and q represents a numerical value greater than 0 but less than or equal to 0.2) Gd2-(r+s)LurCesSiO5  (4) (wherein r represents a numerical value greater than 0 but less than or equal to 2, and s represents a numerical value greater than 0 but less than or equal to 0.2).
Owner:OXIDE

A-B site simultaneously substituting microwave dielectric ceramic material and preparation method thereof

The invention provides an A-B site simultaneously substituting microwave dielectric ceramic material and a preparation method thereof. The general chemical formula of the material is (Ba1-aAa)6-3x(Nd1-bBb)8+2x(Ti1-cCc)18O54, C=MN, wherein x=3 / 4, a is greater than or equal to 0.05 and smaller than or equal to 0.2, b is greater than or equal to 0.05 and smaller than or equal to 0.15, c is greater than or equal to 0.02 and smaller than or equal to 0.08, A represents divalent Ca and Sr elements substituting A1 sites, B represents trivalent Sm and Bi elements substituting A2 sites, M represents Nb with the valence state higher than tetravalency, N represents other one or more elements with a valence state lower than tetravalency and an ionic radius similar to Ti, and M and N substitute simultaneously or individually. The preparation method includes: determining the respective mass percentage content according to the general chemical formula, conducting ball mill mixing, performing presintering under 1000-1150DEG C, and then conducting sintering at 1250-1450DEG C. The prepared material has adjustable dielectric constant and frequency-temperature coefficient and at the same time maintains a high Q*f value. The formula does not contain Pb, Cd and other volatile or heavy metals, the performance is greatly enhanced, the raw materials are in abundant supply, and the price is low, so that low cost of high performance microwave ceramics becomes possible.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products