Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1129results about "Magnetic materials for record carriers" patented technology

Magnetic disk with a guard band arrangement

A magnetic disk including a substrate, a recording track section which is made of a magnetic member for recording and reproducing information magnetically and is provided on the substrate, and a guard band member which is provided between the recording track sections adjacent to each other so that they are substantially continued in a track direction and is harder than the magnetic member and is made of a non-magnetic material. Moreover, the magnetic member is not provided or magnetic members with a different thickness from the magnetic member forming the recording track section is provided on a lower area of the guard band member.
Owner:KK TOSHIBA

Method for synthesis of core-shell type and solid solution alloy type metallic nanoparticles via transmetalation reactions and applications of same

Disclosed is a method for producing core-shell type metallic nanoparticles involving (i) providing a dispersion of a first metal as nanoparticles in an appropriate organic solvent; (ii) providing a solution of a metallic precursor containing a second metal in an appropriate organic solvent, in which the second metal has a reduction potential higher than that of the first metal; and (iii) combining the dispersion from (i) and the solution from (ii) together to carry out the transmetalation reaction of the first and second metals, thereby forming core-shell type metallic nanoparticles.
Owner:KOREA ADVANCED INST OF SCI & TECH

Perpendicular magnetic recording medium with improved magnetic anisotropy field

InactiveUS20100035085A1High HcExcellent crystallographic C axis orientationMagnetic materials for record carriersRecord information storageMagnetic anisotropyAlloy
A perpendicular magnetic recording medium comprising a substrate, a soft underlayer, a seed layer, a non-magnetic FCC NiW alloy underlayer, a non-magnetic HCP underlayer, and a magnetic layer. We have discovered that the combination of a seed layer comprising Ta and a NiW alloy underlayer uniquely improves media recording performance and thermal stability by achieving excellent coercivity of the thin bottom magnetic recording layer and narrow C axis orientation distribution.
Owner:WD MEDIA

Structure and method to fabricate high performance MTJ devices for spin-transfer torque (STT)-RAM application

A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation and containing an oxygen surfactant layer to form a more uniform MgO layer and lower breakdown distribution percent. A CoFeB / NCC / CoFeB composite free layer with a middle nanocurrent channel layer minimizes Jc0 while enabling thermal stability, write voltage, read voltage, and Hc values that satisfy 64 Mb design requirements. The NCC layer has RM grains in an insulator matrix where R is Co, Fe, or Ni, and M is a metal such as Si or Al. NCC thickness is maintained around the minimum RM grain size to avoid RM granules not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A second NCC layer and third CoFeB layer may be included in the free layer or a second NCC layer may be inserted below the Ru capping layer.
Owner:TAIWAN SEMICON MFG CO LTD

Carbon black composition and usage thereof

An aspect of the present invention relates to a carbon black composition, which comprises carbon black; an organic tertiary amine selected from the group consisting of an aliphatic tertiary monoamine and an alicyclic tertiary amine; and at least one organic solvent selected from the group consisting of methyl ethyl ketone, cyclohexanone, isophorone, and ethanol.
Owner:SOITEC SA +1

Hexagonal barium ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium

An aspect of the present invention relates to a hexagonal barium ferrite magnetic particle, wherein, relative to 100 atom percent of a Fe content, an Al content ranges from 1.5 to 15 atom percent, a combined content of a divalent element and a pentavalent element ranges from 1.0 to 10 atom percent, an atomic ratio of a content of the divalent element to a content of the pentavalent element is greater than 2.0 but less than 4.0, and an activation volume ranges from 1,300 to 1,800 nm3.
Owner:FUJIFILM CORP

Magnetic tape

InactiveUS20120196156A1Good electromagnetic characteristicGood characteristic frictionMagnetic materials for record carriersRecord information storageMagnetic tapeNon magnetic
An aspect of the present invention relates to a magnetic tape comprising, on one surface of a nonmagnetic support, a nonmagnetic layer containing a nonmagnetic powder and a binder, and thereon, a magnetic layer containing a ferromagnetic powder and a binder, whereinthe magnetic layer contains a nonmagnetic filler the average particle diameter φ of which satisfies relation (I) below with a thickness t of the magnetic layer:1.0≦φ / t≦2.0  (I);the thickness t of the magnetic layer ranges from 30 to 200 nm;the nonmagnetic layer has a thickness ranging from 30 to 200 nm;a composite elastic modulus as measured on a surface of the magnetic layer ranges from 6.0 to 8.0 GPa; anda centerline average surface roughness Ra of the surface of the magnetic layer, as measured by an optical three-dimensional profilometer, ranges from 0.2 to 1.5 nm.
Owner:FUJIFILM CORP

Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium

An aspect of the present invention relates to a method of manufacturing a hexagonal ferrite magnetic particle comprising melting an Al-containing starting material mixture to prepare a melt and quenching the melt to obtain an amorphous material; subjecting the amorphous material to heat treatment to cause a hexagonal ferrite magnetic particle to precipitate in a product obtained by the heat treatment; collecting a hexagonal ferrite magnetic particle by subjecting the product to treatment with an acid and washing, wherein the hexagonal ferrite magnetic particle collected has a particle size ranging from 15 to 30 nm, comprises 0.6 to 8.0 weight percent of Al, based on Al2O3 conversion, relative to a total weight of the particle, and Al adheres to a surface of the hexagonal ferrite magnetic particle.
Owner:FUJIFILM CORP

Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium and method of manufacturing the same

An aspect of the present invention relates to a method of manufacturing hexagonal ferrite magnetic powder. The method of manufacturing hexagonal ferrite magnetic powder comprises wet processing hexagonal ferrite magnetic particles obtained following acid treatment in a water-based solvent to prepare an aqueous magnetic liquid satisfying relation (1) relative to an isoelectric point of the hexagonal ferrite magnetic particles: pH0−pH*≧2.5, wherein, pH0 denotes the isoelectric point of the hexagonal ferrite magnetic particles and pH* denotes a pH of the aqueous magnetic liquid, which is a value of equal to or greater than 2.0, adding a surface-modifying agent comprising an alkyl group and a functional group that becomes an anionic group in the aqueous magnetic liquid to the aqueous magnetic liquid to subject the hexagonal ferrite magnetic particles to a surface-modifying treatment, and removing the water-based solvent following the surface-modifying treatment to obtain hexagonal ferrite magnetic particles.
Owner:FUJIFILM CORP

Magnetic recording medium and magnetic recording and reproducing device

Provided are a magnetic recording medium, in which a magnetic layer includes ferromagnetic hexagonal ferrite powder, a binding agent, and an oxide abrasive, an intensity ratio Int(110) / Int(114) obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic recording medium is 0.65 to 1.00, a logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding a surface of the magnetic layer is equal to or smaller than 0.050, and an average particle diameter of the oxide abrasive obtained from a secondary ion image obtained by irradiating the surface of the magnetic layer with a focused ion beam is 0.04 μm to 0.08 μm, and a magnetic recording and reproducing device including this magnetic recording medium.
Owner:FUJIFILM CORP

Method for synthesis of core-shell type and solid solution alloy type metallic nanoparticles via transmetalation reactions and applications of same

Disclosed is a method for producing core-shell type metallic nanoparticles involving (i) providing a dispersion of a first metal as nanoparticles in an appropriate organic solvent; (ii) providing a solution of a metallic precursor containing a second metal in an appropriate organic solvent, in which the second metal has a reduction potential higher than that of the first metal; and (iii) combining the dispersion from (i) and the solution from (ii) together to carry out the transmetalation reaction of the first and second metals, thereby forming core-shell type metallic nanoparticles.
Owner:KOREA ADVANCED INST OF SCI & TECH

Magnetic tape and method of manufacturing the same

The magnetic tape has a magnetic layer and a backcoat layer, wherein, each of the magnetic layer and backcoat layer contains a fatty acid ester, the Ra measured on the magnetic layer side surface is less than or equal to 2.8 nm, the difference between the spacing measured by optical interferometry on the magnetic layer side surface after and before vacuum heating is greater than 0 nm but less than or equal to 8.0 nm, the FWHMbefore on the backcoat layer side surface is greater than 0 nm but less than or equal to 10.0 nm, the FWHMafter on the backcoat layer side surface is greater than 0 nm but less than or equal to 10.0 nm; and the difference between the spacing measured on the backcoat layer side surface after and before vacuum heating is greater than 0 nm but less than or equal to 8.0 nm.
Owner:FUJIFILM CORP

Magnetic recording medium

A magnetic recording medium with excellent high density recording performances and good durability comprising a non-magnetic substrate, a non-magnetic layer containing a non-magnetic powder and a binder formed on the non-magnetic substrate, and a magnetic layer having a thickness of less than 100 nm and containing a substantially particulate non-magnetic powder, a substantially particulate magnetic powder having an average particle size of less than 25 nm, and a binder, wherein an average particle size R of the non-magnetic powder contained in the magnetic layer and a thickness D of the magnetic powder satisfy the following relationship: 0.88≦R / D≦2.5.
Owner:FUJIFILM CORP

Magnetoresistive element and magnetic memory

A magnetoresistive element includes a first underlying layer having an NaCl structure and containing a nitride orienting in a (001) plane, a first magnetic layer provided on the first underlying layer, having magnetic anisotropy perpendicular to a film surface, having an L10 structure, and containing a ferromagnetic alloy orienting in a (001) plane, a first nonmagnetic layer provided on the first magnetic layer, and a second magnetic layer provided on the first nonmagnetic layer and having magnetic anisotropy perpendicular to a film surface.
Owner:KIOXIA CORP

Magnetic recording medium

A magnetic recording medium is provided that includes, in order, (1) a non-magnetic support, a radiation-cured layer formed by applying a layer containing a radiation curing compound and curing by exposure to radiation, and a magnetic layer having a ferromagnetic powder dispersed in a binder, or (2) a non-magnetic support, a radiation-cured layer formed by applying a layer containing a radiation curing compound and curing by exposure to radiation, a non-magnetic layer having a non-magnetic powder dispersed in a binder, and a magnetic layer having a ferromagnetic powder dispersed in a binder; the radiation-cured layer including 0.3 to 30 parts by weight of an inorganic powder relative to 100 parts by weight the radiation curing compound.
Owner:FUJIFILM CORP +1

Magnetic tape, its cleaning method, and optical servotrack forming/cleaning apparatus

A magnetic tape which comprises a nonmagnetic support, a magnetic layer which is formed on one surface of the nonmagnetic support, and a backcoat layer which comprises a binder and nonmagnetic powder containing carbon black as a component and which is formed on the other surface of the nonmagnetic support, having pits for optical servo formed thereon, characterized in that the average of the reflectance on the flat portion of the backcoat layer is 8.5% or higher, and that the maximum rate of fluctuation of the reflectance on the flat portion, depending on a position of the magnetic tape:[Maximum of absolute value of (Reflectance−Average reflectance)]×100 / (Average reflectance)is 10% or lower. This magnetic tape is high in the initial S / N of the servo signal, and also high in the S / N of the servo signal found after the magnetic tape is run twice.
Owner:FUJIFILM CORP

Magnetoresistive element and magnetic memory

A magnetoresistive element includes a first reference layer having magnetic anisotropy perpendicular to a film surface, and an invariable magnetization, a recording layer having a stacked structure formed by alternately stacking magnetic layers and nonmagnetic layers, magnetic anisotropy perpendicular to a film surface, and a variable magnetization, and an intermediate layer provided between the first reference layer and the recording layer, and containing a nonmagnetic material. The magnetic layers include a first magnetic layer being in contact with the intermediate layer and a second magnetic layer being not in contact with the intermediate layer. The first magnetic layer contains an alloy containing cobalt (Co) and iron (Fe), and has a film thickness larger than that of the second magnetic layer.
Owner:KIOXIA CORP

Magnetic recording medium

An aspect of the present invention relates to a magnetic recording medium comprising a magnetic layer containing a ferromagnetic powder and a binder on a nonmagnetic support, wherein the ferromagnetic powder has a hexagonal ferrite structure, the magnetic layer comprises a coefficient of friction-lowering component in the form of nonmagnetic inorganic particles, and a compound in which a substituent selected from the group consisting of a hydroxyl group and a carboxyl group is directly substituted on an aromatic ring.
Owner:FUJIFILM CORP

Magnetic tape

An aspect of the present invention relates to a magnetic tape comprising a magnetic layer comprising ferromagnetic powder and binder on a nonmagnetic support, wherein ΔSFD in a longitudinal direction of the magnetic tape as calculated with Equation 1 ranges from 0.35 to 1.50:ΔSFD=SFD25° C.−SFD−190° C.  Equation 1wherein, in Equation 1, SFD25° C. denotes a switching field distribution SFD as measured in the longitudinal direction of the magnetic tape in an environment with a temperature of 25° C., and SFD−190° C. denotes a switching field distribution SFD as measured in the longitudinal direction of the magnetic tape in an environment with a temperature of −190° C.
Owner:FUJIFILM CORP

Magnetic tape and method of manufacturing the same, and magnetic recording device

An aspect of the present invention relates to a magnetic tape comprising a magnetic layer containing a ferromagnetic powder and a binder on a nonmagnetic support, whereinthe ferromagnetic powder is a hexagonal ferrite powder,squareness in a vertical direction without demagnetizing field correction of the magnetic layer ranges from 0.6 to 1.0, andthe magnetic layer further comprises a compound in which a substituent selected from the group consisting of a carboxyl group and a hydroxyl group is directly substituted into a ring structure comprising a double bond and having a ClogP falling within a range of 2.3 to 5.5.
Owner:FUJIFILM CORP

Magnetic tape

Provided is a magnetic tape in which the total thickness of the non-magnetic layer and the magnetic layer is equal to or smaller than 0.60 μm, the magnetic layer includes ferromagnetic hexagonal ferrite powder and an abrasive, a percentage of a plan view maximum area of the abrasive confirmed in a region having a size of 4.3 μm×6.3 μm of the surface of the magnetic layer by plane observation using a scanning electron microscope, with respect to the total area of the region is equal to or greater than 0.02% and less than 0.06%, and a tilt cos 0 of the ferromagnetic hexagonal ferrite powder with respect to a surface of the magnetic layer acquired by cross section observation performed by using a scanning transmission electron microscope is 0.85 to 1.00.
Owner:FUJIFILM CORP

Magnetic recording medium

To provide a magnetic recording medium which undergoes little effect of thermal fluctuation and provides a high short wavelength output and C / N ratio when reproduction is conducted using MR head, the magnetic recording medium includes a non-magnetic layer having a non-magnetic powder dispersed in a binder provided on a support and a magnetic layer having a ferromagnetic powder dispersed in a binder provided on the non-magnetic layer, wherein the ferromagnetic powder comprises a hexagonal ferrite magnetic powder having an average diameter of from 10 to 35 nm and a coercive force of from 135 to 400 kA / m; the magnetic layer has a coercive force of from 135 to 440 kA / m; and a product of an anisotropic magnetic field of the magnetic layer and an average particle volume of the hexagonal ferrite magnetic powder is from 1.2×106 to 2.4×106 kA / m·nm3.
Owner:FUJIFILM HLDG CORP +1

Magnetic recording medium comprising a magnetic layer having specific thickness, surface roughness and friction coefficient

A magnetic recording medium comprising a non-magnetic support, at least one primer layer formed on one surface of the non-magnetic support, a magnetic layer formed on the primer layer, and a backcoat layer formed on the other surface of the non-magnetic support, wherein the magnetic layer has a thickness of 0.30 μm or less and a centerline average surface roughness Ra of 3.2 nm or less, and (P1−P0) is 30 nm or less and (P1-P20) is 5 nm or less in which P0 is an averaged height of projections of the magnetic layer, and P1, P2, - - - and P20 are heights of the highest, the second highest, - - - and the 20th highest projections of the magnetic layer, respectively.
Owner:FUJIFILM CORP

Magnetic tape device and magnetic reproducing method

The magnetic tape device includes a TMR head as a reproducing head; and a magnetic tape which includes a non-magnetic support, and a magnetic layer including ferromagnetic hexagonal ferrite powder and a binding agent on the non-magnetic support, an XRD intensity ratio (Int(110) / Int(114)) of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 2.0 nm, and a logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the magnetic layer is equal to or smaller than 0.050.
Owner:FUJIFILM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products