Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

94results about How to "High polarization" patented technology

Double-layer structure flexible piezoelectric film with high output, preparation and application method thereof

Belonging to the field of electronic composite materials and nano-functional materials, the invention provides a double-layer structure flexible piezoelectric film with high output, a preparation andapplication method thereof. A layer-by-layer solution spin coating-heat treatment process is adopted, an inorganic piezoelectric material is used as the filler to enhance the piezoelectric output of the composite film, and the double-layer structure is utilized to acquire high output and good mechanical properties at the same time. The inorganic filler is nanoparticles or nanofiber of barium titanate, barium strontium titanate, lead zirconate titanate and other piezoelectric ceramics, or nanoparticles or nanofiber of magnesium oxide, zinc oxide and other metal oxides, or multiwalled carbon nanotube. The polymer matrix can be polyvinylidene fluoride, polyvinylidene fluoride-trifluoroethylene, polyvinylidene fluoride-trifluoroethylene-hexafluoropropylene and other materials. By adjusting thefiller content and the filler distribution in the double layers, the filler efficiency can be improved. The composite material has the characteristics of good flexibility, high piezoelectric output,high sensitivity and light weight, and can be used as a power supply of wearable equipment, as a flexible sensor to detect human activities and the like.
Owner:UNIV OF SCI & TECH BEIJING

High-voltage-withstanding, low-electric-leakage and high-polarization strength bismuth ferrite thin film and preparation method thereof

The invention relates to a high-voltage-withstanding, low-electric-leakage and high-polarization strength bismuth ferrite thin film and a preparation method thereof. The high-voltage-withstanding, low-electric-leakage and high-polarization strength bismuth ferrite thin film comprises a base body, a bottom electrode, a bismuth ferrite dielectric layer and a top electrode, a mono-crystal oxide semiconductor substrate with lattice constant close to that of the bismuth ferrite is used as the base body, the bottom electrode is a conductive oxide thin film, and the top electrode is a metal thin film point electrode. The bottom electrode is deposited on the base body in a coaxial sputtering mode, then the bismuth ferrite dielectric layer is deposited on the bottom electrode in an off-axis sputtering mode, and at last the top electrode is deposited on the bismuth ferrite dielectric layer so that the thin film can be prepared. The prepared BiFeO3 thin film is in a rhombohedral shape and achieves height orientation, a ferroelectric hysteresis loop with good rectangularity is achieved under the room temperature, the intensity of polarization is high, the intensity of magnetization can reach 100 -110 micro coulombs / cm<2>, the voltage withstanding performance is good, and the maximum withstand voltage can achieve 50 v.
Owner:欧阳俊

SrTiO<3>-based lead-free high-energy-density ceramic material and preparation method thereof

The invention discloses an SrTiO<3>-based lead-free high-energy-density ceramic material and a preparation method thereof, and belongs to the technical field of material preparation. According to the method, firstly, 10 to 30 mol percent of Na<0.5>Bi<0.5>TiO<3> powder is added into SrTiO<3> powder to form a mixture; the mixture is subjected to ball milling and drying to obtain dried materials; then, the dried materials are sequentially granulated and sieved to form granulation materials; the granulation materials are made into test specimens; then, sintering is performed to obtain sintering test specimens; grinding and cleaning are performed on the obtained sintering test specimens; the front side and the back side of the ground and cleaned sintering test specimens are uniformly coated with silver electrode slurry; then, sintering is performed; and (1-x)SrTiO<3>-xNa<0.5>Bi<0.5>TiO<3> ceramics are obtained. The high-energy-density ceramic material obtained by using the method provided by the invention has the advantages that the preparation process is simple; the material cost is low; and the mass production can be realized, so that an effective path is provided for the application of the high-energy-density ceramic material.
Owner:SHAANXI UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products