Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1353 results about "Magnetoresistive sensor" patented technology

Unscented Kalman filter-based method for tracking inertial pose according to acceleration compensation

The invention provides an unscented Kalman filter-based method for tracking an inertial pose according to acceleration compensation, which is used for an inertial measurement unit integrating a three-axis micro-gyroscope, a three-axis micro-accelerometer and a three-axis magnetoresistive sensor, and realizes pose tracking estimation on a device carrier by using rotary angular velocity vectors, acceleration vectors and magnetic field sensor vectors which are detected by the device by means of filter technology. The method comprises the following steps: 1) treating the acceleration vectors as combination of the acceleration vectors and gravity acceleration vectors of the device carrier self, and constructing observation equations respectively for amplitude and normalized direction vectors of the acceleration vectors and the gravity acceleration vectors; 2) describing quaternion, accumulated error vectors of the gyroscope and the acceleration vectors of the device carrier self by using the pose to construct a system state vector; and 3) realizing a filter estimating process of the system by using the unscented Kalman filter technology because of nonlinearity of the observation equations. Compared with the conventional method ignoring the acceleration of the carrier self, the method not only can provide a more accurate estimation result, but also widens the application range of the system.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

ARM (advanced RISC (reduced instruction set computer) machines) and FPGA (field-programmable gate array) based navigation and flight control system for unmanned helicopter

The invention discloses an ARM (advanced RISC (reduced instruction set computer) machines) and FPGA (field-programmable gate array) based navigation and autonomous flight control system for an unmanned helicopter. The system comprises a PC (personal computer), an integrated navigation subsystem, a power supply module and controllers, wherein the integrated navigation subsystem comprises a sensor group; the sensor group comprises a GPS (global positioning system), a gyroscope, an accelerometer, a magnetoresistive sensor, a barometric altimeter and a sonar altimeter; the controllers include a main controller and a steering engine controller; the main controller adopts an ARM microprocessor to operate the integrated navigation algorithm and flight control PID (proportion integration differentiation) algorithm and simultaneously completes data acquisition of the GPS, the barometric altimeter and the sonar altimeter; and the steering engine controller adopts an FPGA to realize data acquisition of the gyroscope, the accelerometer and the magnetoresistive sensor and transfers the data to the main controller via a concurrent bus to carry out attitude calculation and control operation on the unmanned helicopter. With the unmanned helicopter as a carrier, the hardware environment of a whole set of flight control system integrating study of the aircraft navigation and control theory problem, data acquisition, information transfer and embedded control is set up.
Owner:TIANJIN UNIV

Integrated Membrane Sensor

An integrated microelectronic sensor is provided in a disposable flow membrane sensing device. The integrated sensors detect electromagnetic effect labels in flow detection zones above the sensor in the membrane. The labels are small particles that give off a detectable electromagnetic signal. They are commonly used for isolating and quantifying biochemical targets of interest. The sensors are fabricated using planar integrated circuit technologies. Sensors can detect labels of several types including magnetic, electric, and photonic. These types all have in common the fact that the sensor detects the label at a distance. Magnetoresistive sensors for detecting magnetic labels, and photodiodes for detecting photonic labels are described.
A system for using the sensors is described. There are disposable cartridges with a backing that supports the sensors and membrane is described. The integrated sensor in the cartridge is designed to be discarded after use. Also, label excitation sources are provided. The multi sensor array chip can be configured in order to detect labels in multiple zones, and to monitor progress of flow down a strip of membrane. These multiple label detection zones, using sandwich assay techniques, can quantify analyte concentration for many types of analytical samples. Also, the membrane can be micropatterned in order to provide multiple or unusually shaped flow paths.
Owner:DIAGNOSTIC BIOSENSORS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products