Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1588 results about "Gate array" patented technology

A gate array is an approach to the design and manufacture of application-specific integrated circuits (ASICs) using a prefabricated chip with components that are later interconnected into logic devices (e.g. NAND gates, flip-flops,etc.) according to a custom order by adding metal interconnect layers in the factory.

System and method for high speed packet transmission implementing dual transmit and receive pipelines

The present invention provides systems and methods for providing data transmission speeds at or in excess of 10 gigabits per second between one or more source devices and one or more destination devices. According to one embodiment, the system of the present invention comprises a first and second media access control (MAC) interfaces to facilitate receipt and transmission of packets over an associated set of physical interfaces. The system also contemplates a first and second field programmable gate arrays (FPGA) coupled to the MAC interfaces and an associated first and second memory structures, the first and second FPGAs are configured to perform initial processing of packets received from the first and second MAC interfaces and to schedule the transmission of packets to the first and second MAC interface for transmission to one or more destination devices. The first and second FPGAs are further operative to dispatch and retrieve packets to and from the first and second memory structures. A third FPGA, coupled to the first and second memory structures and a backplane, is operative to retrieve and dispatch packets to and from the first and second memory structures, compute appropriate destinations for packets and organize packets for transmission. The third FPGA is further operative to receive and dispatch packets to and from the backplane.
Owner:AVAGO TECH INT SALES PTE LTD

FPGA with register-intensive architecture

Field programmable gate arrays (FPGA's) may be structured in accordance with the disclosure to have a register-intensive architecture that provides, for each of plural function-spawning LookUp Tables (e.g. a 4-input, base LUT's) within a logic block, a plurality of in-block accessible registers. A register-feeding multiplexer means may be provided for allowing each of the plural registers to equivalently capture and store a result signal output by the corresponding, base LUT of the plural registers. Registerable, primary and secondary feedthroughs may be provided for each base LUT so that locally-acquired input signals of the LUT may be fed-through to the corresponding, in-block registers for register-recovery purposes without fully consuming (wasting) the lookup resources of the associated, base LUT. A multi-stage, input switch matrix (ISM) may be further provided for acquiring and routing input signals from adjacent, block-interconnect lines (AIL's) and/or block-intra-connect lines (e.g., FB's) to the base LUT's and/or their respective, registerable feedthroughs. Techniques are disclosed for utilizing the many in-block registers and/or the registerable feedthroughs and/or the multi-stage ISM's for efficiently implementing various circuit designs by appropriately configuring such register-intensive FPGA's.
Owner:LATTICE SEMICON CORP

Unit for processing numeric and logic operations for use in central processing units (CPUS), multiprocessor systems, data-flow processors (DSPS), systolic processors and field programmable gate arrays (FPGAS)

An expanded arithmetic and logic unit (EALU) with special extra functions is integrated into a configurable unit for performing data processing operations. The EALU is configured by a function register, which greatly reduces the volume of data required for configuration. The cell can be cascaded freely over a bus system, the EALU being decoupled from the bus system over input and output registers. The output registers are connected to the input of the EALU to permit serial operations. A bus control unit is responsible for the connection to the bus, which it connects according to the bus register. The unit is designed so that distribution of data to multiple receivers (broadcasting) is possible. A synchronization circuit controls the data exchange between multiple cells over the bus system. The EALU, the synchronization circuit, the bus control unit, and registers are designed so that a cell can be reconfigured on site independently of the cells surrounding it. A power-saving mode which shuts down the cell can be configured through the function register; clock rate dividers which reduce the working frequency can also be set.
Owner:PACT +1

Fault tolerant operation of field programmable gate arrays

A method of fault tolerant operation of field programmable gate arrays (FPGAs), whether as an embedded portion of a system-on-chip or other application specific integrated circuit, utilizing incremental reconfiguration during normal on-line operation includes configuring an FPGA into a self-testing area and a working area. Within the self-testing area, programmable interconnect resources of the FPGA are tested for faults. Upon the detection of one or more faults within the interconnect resources, the faulty interconnect resources are identified and a determination is made whether utilization of the faulty interconnect resources is compatible with an intended operation of the FPGAs. If the faulty interconnect resources are compatible with the intended operation of the FPGA, utilization of the faulty interconnect resource is allowed to provide fault tolerant operation of the FPGA. If the faulty interconnect resources are not compatible with the intended operation of the FPGA, on the other hand, a multi-step reconfiguration process may be initiated which attempts to minimize the effects of each reconfiguration on the overall performance of the FPGA. In an alternate embodiment, the entire FPGA may be configured as one or more self-testing areas during off-line testing, such as manufacturing testing.
Owner:JUNIVERSITI OF NORT KAROLINA EHT SHARLOTT +1

Expressway-based embedded integrated automatic driving controller

The present invention belongs to the automatic driving technical field and relates to an expressway-based embedded integrated automatic driving controller. The expressway-based embedded integrated automatic driving controller comprises an automatic driving sensing unit, a vehicle vertical and horizontal action control module, a driving mode switching control module and a human-computer interaction control module which are all integrated on a programmable gate array; the programmable gate array comprises at least a data transmission interface, a control signal transmission interface and a human-computer interaction interface, wherein the data transmission interface carries out data interaction with an environment sensor and a vehicle speed sensor, the control signal transmission interface can transmit control instructions to an execution unit, and the human-computer interaction interface transmits signals to a human-computer interaction system. A whole set of automatic driving system with functions such as sensing integration, path planning, decision planning and control is integrated into an embedded controller, so that the expressway-based embedded integrated automatic driving controller can be realized, and automatic driving functions such as adaptive navigation, lane keeping, autonomous lane changing, autonomous overtaking, autonomous acceleration, emergency braking and automatic pull over can be realized, and the size of the automatic driving system can be greatly decreased, and the power consumption of the system is decreased. The controller is easy to realize mass production.
Owner:DONGFENG MOTOR CORP HUBEI

Magnetic advanced gas-turbine transmission with radial aero-segmented nanomagnetic-drive (MAGTRAN)

An electrical machine apparatus having magnetic gearing embedded therein includes a moveable rotor having a first magnetic field associated therewith, a stator configured with a plurality of stationary stator windings therein, and a magnetic flux modulator interposed between the moveable rotor and the stator windings. The magnetic flux modulator is configured to transmit torque between the first magnetic field associated with the moveable rotor and a second magnetic field through a movable stator, through a plurality of magnetic flux gates arranged axially in the modulator with the field excited by, and controlled by, eddy currents normal to the field through the plurality of stationary stator magnets governed by the position of the modulator rotating in reference to the rotating (at different speeds, hence flux paths) stator and rotor and their magnetic field poles, than the speed of the modulator and its interfering referenced field poles, with the eddy currents existing flux gate arrays with open or closing sequencing governing rotational speeds of the movable rotor, and enabling magnetic gear ratios, in respect to the driving movable stator, intermediate magnetic flux modulator, methods of a continuously variable, high torque, aero gas turbine transmission which allows for complete segmentation of turbomachinary stages (in respect to the bypass fan, compressor and power of the aero gas turbine.
Owner:SONIC BLUE AEROSPACE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products