Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

9618 results about "Structure of Management Information" patented technology

In computing, the Structure of Management Information (SMI), an adapted subset of ASN.1, operates in Simple Network Management Protocol (SNMP) to define sets ("modules") of related managed objects in a Management Information Base (MIB).

Multimedia surveillance and monitoring system including network configuration

A comprehensive, wireless multimedia surveillance and monitoring system provides a combination of megapixel digital camera capability with full motion video surveillance with a network, including network components and appliances such as wiring, workstations, and servers with the option of geographical distribution with various wide area carriers. The full service, multi-media surveillance system is capable of a wide range of monitoring techniques utilizing digital network architecture and is adapted for transmitting event data, video and / or image monitoring information, audio signals and other sensor and detector data over significant distances using digital data transmission over a LAN, wireless LAN, Intranet or Internet for automatic assessment and response including dispatch of response personnel. Both wired and wireless appliance and sensor systems may be employed. GPS dispatching is used to locate and alert personnel as well as to indicate the location of an event. Automatic mapping and dispatch permits rapid response. The wireless LAN connectivity permits local distribution of audio, video and image data over a relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith. The surveillance system may be interfaced with a WAN (wide area Network) or the Internet for providing a worldwide, low cost surveillance system with virtually unlimited geographic application. Centralized monitoring stations have access to all of the surveillance data from various remote locations via the Internet or the WAN. A server provides a centralized location for data collection, alarm detection and processing, access control, dispatch processing, logging functions and other specialized functions. The server may be inserted virtually anywhere in the Intranet / Internet network. The topology of the network will be established by the geographic situation of the installation. Appropriate firewalls may be set up as desired. The server based system permits a security provider to have access to the appliance and sensor and surveillance data or to configure or reconfigure the system for any station on the network.

System and method for high speed packet transmission implementing dual transmit and receive pipelines

The present invention provides systems and methods for providing data transmission speeds at or in excess of 10 gigabits per second between one or more source devices and one or more destination devices. According to one embodiment, the system of the present invention comprises a first and second media access control (MAC) interfaces to facilitate receipt and transmission of packets over an associated set of physical interfaces. The system also contemplates a first and second field programmable gate arrays (FPGA) coupled to the MAC interfaces and an associated first and second memory structures, the first and second FPGAs are configured to perform initial processing of packets received from the first and second MAC interfaces and to schedule the transmission of packets to the first and second MAC interface for transmission to one or more destination devices. The first and second FPGAs are further operative to dispatch and retrieve packets to and from the first and second memory structures. A third FPGA, coupled to the first and second memory structures and a backplane, is operative to retrieve and dispatch packets to and from the first and second memory structures, compute appropriate destinations for packets and organize packets for transmission. The third FPGA is further operative to receive and dispatch packets to and from the backplane.

Secure integrated device with secure, dynamically-selectable capabilities

A method, system, computer program product, and method of doing business by providing a secure integrated device (such as a pervasive computing device) for which operating capabilities can be dynamically yet securely selected (including, but not limited to, pluggable connection of input/output devices and/or application processors that provide selected functions). Each input/output (I/O) device and application processor to be used is plugged in to a bus of a security core, and authenticates itself to the security core using public key infrastructure techniques, thereby creating a secure multi-function device. All of the multi-function device's input and output interactions with its environment necessarily traverse an I/O bus under the sole control of the security core. The only communication path between an application processor and the external environment (such as an I/O device) is through an application processor bus, which is likewise under control of the security core. Thus a user may dynamically yet securely select the capabilities of a multi-function device, and because each I/O device and application processor in use by that multi-function device is authenticated, the security of transactions or network services performed when using such devices is improved.

Cloud platform supporting fusion network service and operating method thereof

The invention relates to a cloud platform supporting fusion network service and an operating method thereof. The cloud platform is provided with a plurality of hardware and software resources, and is connected with three access networks of a telecommunication network, an interconnection network and a broadcasting and television network respectively through three core networks of operators of the three networks and the corresponding communication protocol to allow platform users (including the operators of the three networks or service providers and the like) to rent platform resources according to respective requirements to deploy respective services and operational capabilities. The cloud platform has a layered structure, and is provided with a platform management layer, a service execution layer, a resource virtualization and management layer and a hardware resource layer respectively from top to bottom, and in an interactive mode among the layers, an upper-layer module uses the function provided a lower-layer module in a mode of interface call. The cloud platform supports the platform users to adjust the rent resources dynamically and conveniently according to actual requirements, and simultaneously, provides the access capability on the resources of the three networks and convenience for the development and operation of the fusion network service by the platform users.

Apparatus and method for locating, tracking, controlling and recognizing tagged objects using active RFID technology.

The present invention is directed to a miniaturized apparatus to locate, track, recognize and control objects using miniature RF circuits that are programmed as an active tag or as one of several embodiments of a controller, including one small enough to be incorporated into a personal object, like a ring. In its simplest embodiment, a portable or wearable controller communicates wirelessly with a tag secured to a surface, analogously to a car remote—push button, receive a signal from tag or back at the controller, to locate tagged object. In more complex forms, the tag can be integrated into objects or connected to a network. One controller can manage a plurality of tags. The basic platform of tag and controller can be built up to create a sophisticated area control with environmental sensors, inventory functions, tracking individuals and allowing or denying access, operating objects like doors and lights, and creating supporting ambient security with checks and balances between tags and controllers on people and their possessions, such as baggage at an airport. Arrays of tag or controllers extend the wireless range to accommodate large structures and areas. This novel system is self-contained, with a low power protocol to give long battery life time and does not require internet or GPS to perform its functions.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products