Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

110results about How to "Minimize signaling" patented technology

Equalizer circuit, communication system, and method that is adaptive to varying launch amplitudes for reducing receiver error

A transmission line equalizer, communication system, and method are provided for adaptively compensating for changes in transmission path length and transmission path medium. Within the equalizer is a filter that exhibits a high pass characteristic and, more specifically, has an inverse frequency response to that of the transmission path. The inverse filter can include a pair of amplifier stages coupled in parallel, with a mixer chosen to adaptively select portions of one stage over than of the other. The dual stage inverse filter can, therefore, adapt to greater transmission path lengths and/or attenuation. A feedback architecture is used to set the inverse filter response by measuring the amplitude of a communication signal output from the inverse filter during periods of low frequency. A peak detector will capture a peak-to-peak voltage value during those periods, and adjust the output of the slicer to match a launch amplitude of the communication signal. The peak detector within the feedback architecture helps ensure the predicted amplitude matches the launch amplitude to minimize over-compensation or under-compensation even though a different integrator might register no difference in integrated voltage or energy at the output of the inverse filter compared to the output of the slicer.
Owner:RPX CORP

Enhancing Isolation and Impedance Matching in Hybrid-Based Cancellation Networks and Duplexers

ActiveUS20150163044A1Reduces and minimizes signal return lossIncrease and maximizes signal isolationFrequency-division multiplex detailsPower amplifiersCommunications systemAudio power amplifier
Multi-port hybrid-based cancellation networks may be used to enable simultaneous transmit and receive in one or more co-existent communication systems. A multi-port hybrid-based cancellation network may include a first and second quadrature hybrid, a first and second two-port network, and other circuitry components. The second quadrature hybrid may be distinct from the first quadrature hybrid. The first two-port network may include a first filter or a first amplifier connected between the first and the second quadrature hybrids. The second two-port network may include a second filter or a second amplifier that is distinct from but essentially the same as the first filter or the first amplifier connected between the first and the second quadrature hybrids. The other circuitry components may be connected between or connected to a connection between one of the quadrature hybrids and one of the two-port networks. These other circuitry components may have a configuration that minimizes signal return loss at least one of the ports of the multi-port hybrid-based cancellation network. They may in addition or instead have a configuration that maximizes signal isolation between at least two of the ports of the multi-port hybrid-based cancellation network.
Owner:UNIV OF SOUTHERN CALIFORNIA

Localized application of high impedance fault isolation in multi-tap electrical power distribution system

A high impedance fault isolation system (HIFIS) identifies, isolates and dissipates high impedance, low current faults which occur within an individual tap, or branch, of an electric power distribution system using only portions of the tap affected. A master meter, or father smart meter (FSM), on the affected tap sends a coded signal to an antenna receiver combined with a microprocessor and chip which operates an electromagnetic control (EMC) grounding spring switch which isolates the downed primary conductor by causing the distribution system protecting device, i.e., a high voltage fuse or recloser, to de-energize the downed primary wire. This localized application of the HIFIS at the individual tap level allows the FSM to analyze and determine, for example, that the specific field condition is a “downstream wire down”, and that the installed isolating device has failed to operate because of insufficient fault current, allowing the localized intervention of the HIFIS to achieve the de-energization more efficiently and safely, and within a much shorter time period. A fire door sensor circuit then receives the trip signal from the microprocessor, causing the fire door sensor to melt open and release a shorting spring, in initiating operation of an expulsion fuse or recloser, which kills the downed live wire.
Owner:ELECTRICAL MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products