Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

83 results about "Inversion pulse" patented technology

Imaging method for MRI contrast enhancement

The invention discloses an imaging method for MRI contrast enhancement. Optimized inversion pulses are utilized to replace inversion pulses of a conventional inversion recovery sequence in MRI and to restore delay time, under the precise control of the optimized pluses, spin of different tissue will be evolved towards the trend of maximization of longitudinal magnetic moment differences, and the maximum longitudinal magnetic moment difference is obtained at the end moment of the pluses; on that basis, 90-degree excitation read pluses are applied to enable the maximized magnetic moment difference among the tissue to be turned over to a transverse plane, gradient echo signals are collected to form k spatial data, and the purpose of contrast enhancement among the tissue can be finally achieved through improvement on a phase sensitive image reconstruction method. According to the imaging method, the problem of too long scanning time of the conventional inversion recovery sequence is solved, the advantages of flexibility of optimized pulse waveforms and flexibility of the phase sensitive image reconstruction method are fully utilized, use of expensive magnetic resonance contrast media can be avoided, and the imaging method is superior to an existing MRI contrast enhancement method both in performance and in cost.
Owner:SUZHOU INST OF BIOMEDICAL ENG & TECH CHINESE ACADEMY OF SCI

RF pulses for long T2 suppression in MRI

In imaging a first species having a short T2 magnetic resonance parameter in the presence of a second and third species having longer T2 parameters, a method of suppressing signals from the longer T2 species comprises the steps of: a) applying a RF saturation pulse with multiple suppression bands for the second and third species to excite nuclei spins of the longer T2 species with the magnitude of the RF pulse being sufficiently low so as not to excite nuclei spins of the short T2 species, the RF saturation pulse being sufficiently long to rotate the longer T2 species nuclei spins into a transverse plane, and b) dephasing the longer T2 species nuclei spins in the transverse plane. An imaging pulse sequence is then applied to image the short T2 species. Alternatively, the method can comprise the steps of a) applying a first inversion pulse for selective inverting species of the second longer T2 species, b) obtaining first image signals after step a, c) applying a second inversion pulse for selectively inverting species of the third longer T2 species, d) obtaining second image signals after step c), and e) combining the first image signals and the second image signal to image the first short T2 species with the longer second and third species cancelling in the combination. In each of these methods, either the second or third longer T2 species can be suppressed without suppressing the other by applying the RF saturation or inversion pulse only to the species to be suppressed.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products