Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3104 results about "Transverse plane" patented technology

The transverse plane or axial plane (also called the horizontal plane or transaxial plane) is an imaginary plane that divides the body into superior and inferior parts. It is perpendicular to the coronal plane and sagittal plane.

Space microgravity environment ground simulation experiment device

The invention relates to a space microgravity environment ground simulation experiment device. The device comprises a foundation, two support posts, a transverse air floating guide rail, a longitudinal air floating guide rail, a slide trolley and a weightless simulation control system. Two support posts are respectively mounted on the foundation horizontally, the transverse air floating guide rail is mounted on the two support posts, the longitudinal air floating guide rail is mounted on the transverse air floating guide rail, the slide trolley is mounted on the longitudinal air floating guide rail, weightless simulation control system is mounted on the slide trolley, and a controller is mounted on the slide trolley. The weightless simulation control system comprises a servo motor, a coiling wheel, a hang spring, a force sensor and an aircraft, the servo motor is connected with the coiling wheel, the coiling wheel is connected with the hang spring, the hang spring is connected with the force sensor, the force sensor is connected with the aircraft, and the controller is respectively connected with the force sensor and the servo motor in an electrical signal manner. The device is simple in structure, high in vividness, convenient to operate, easy to achieve, low in cost, and unlimited in experiment time.
Owner:HARBIN INST OF TECH

Optical waveguide structures

The purely bound electromagnetic modes of propagation supported by waveguide structures comprised of a thin lossy metal film of finite width embedded in an infinite homogeneous dielectric have been characterized at optical wavelengths. One of the fundamental modes supported by the structure exhibits very interesting characteristics and is potentially quite useful. It evolves with decreasing film thickness and width towards the TEM wave supported by the background (an evolution similar to that exhibited by the sb mode in symmetric metal film slab waveguides), its losses and phase constant tending asymptotically towards those of the TEM wave. Attenuation values can be well below those of the sb mode supported by the corresponding metal film slab waveguide. Low mode power attenuation in the neighbourhood of 10 to 0.1 dB/cm is achievable at optical communications wavelengths, with even lower values being possible. Carefully selecting the film's thickness and width can make this mode the only long-ranging one supported. In addition, the mode can have a field distribution that renders it excitable using an end-fire approach. The existence of this mode renders the finite-width metal film waveguide attractive for applications requiring short propagation distances and 2-D field confinement in the transverse plane, enabling various devices to be constructed, such as couplers, splitters, modulators, interferometers, switches and periodic structures. Under certain conditions, an asymmetric structure can support a long-ranging mode having a field distribution that is suitable to excitation using an end-fire technique. Like asymmetric slab waveguides. The attenuation of the long-ranging mode near cutoff decreases very rapidly, much more so than the attenuation related to the long-ranging mode in a similar symmetric structure. The cutoff thickness of a long-ranging mode in an asymmetric finite-width structure is larger than the cutoff thickness of the sb mode in a similar asymmetric slab waveguide. This implies that the long-ranging mode supported by an asymmetric finite-width structure is more sensitive to the asymmetry in the structure compared to the sb mode supported by a similar slab waveguide. This result is interesting and potentially useful in that the propagation of such a mode can be affected by a smaller change in the dielectric constant of the substrate or superstrate compared with similar slab structures.
Owner:UNIVERSITY OF OTTAWA

Optical waveguide structures

The purely bound electromagnetic modes of propagation supported by waveguide structures comprised of a thin lossy metal film of finite width embedded in an infinite homogeneous dielectric have been characterized at optical wavelengths. One of the fundamental modes supported by the structure exhibits very interesting characteristics and is potentially quite useful. It evolves with decreasing film thickness and width towards the TEM wave supported by the background (an evolution similar to that exhibited by the sb mode in symmetric metal film slab waveguides), its losses and phase constant tending asymptotically towards those of the TEM wave. Attenuation values can be well below those of the sb mode supported by the corresponding metal film slab waveguide. Low mode power attenuation in the neighborhood of 10 to 0.1 dB / cm is achievable at optical communications wavelengths, with even lower values being possible. Carefully selecting the film's thickness and width can make this mode the only long-ranging one supported. In addition, the mode can have a field distribution that renders it excitable using an end-fire approach. The existence of this mode renders the finite-width metal film waveguide attractive for applications requiring short propagation distances and 2-D field confinement in the transverse plane, enabling various devices to be constructed, such as couplers, splitters, modulators, interferometers, switches and periodic structures. Under certain conditions, an asymmetric structure can support a long-ranging mode having a field distribution that is suitable to excitation using an end-fire technique. Like asymmetric slab waveguides. The attenuation of the long-ranging mode near cutoff decreases very rapidly, much more so than the attenuation related to the long-ranging mode in a similar symmetric structure. The cutoff thickness of a long-ranging mode in an asymmetric finite-width structure is larger than the cutoff thickness of the sb mode in a similar asymmetric slab waveguide. This implies that the long-ranging mode supported by an asymmetric finite-width structure is more sensitive to the asymmetry in the structure compared to the sb mode supported by a similar slab waveguide. This result is interesting and potentially useful in that the propagation of such a mode can be affected by a smaller change in the dielectric constant of the substrate or superstrate compared with similar slab structures.
Owner:UNIVERSITY OF OTTAWA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products