Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3393 results about "Thermal transfer" patented technology

Methods for delivering, repositioning and/or retrieving self-expanding stents

Methods for delivery and deploying a stent formed of a shape memory alloy to a desired position in a tubular area of the body, and / or for repositioning and / or retrieving a stent formed of a two-way shape memory alloy. An arrangement is provided by which the temperature of the stent is locally adjusted during delivery, repositioning and / or retrieval in a safe and controlled manner by engagement with an expandable and collapsible thermal transfer member situated on a catheter assembly.
Owner:INTEK TECH

Showerhead with reduced contact area

A showerhead for distributing gases in a semiconductor process chamber. In one embodiment, a showerhead comprising a perforated center portion, a mounting portion circumscribing the perforated center portion and a plurality of bosses extending from the mounting portion each having a hole disposed therethrough is provided. Another embodiment of the invention provides a showerhead that includes a mounting portion having a first side circumscribing a perforated center portion. A ring extends from the first side of the mounting portion. A plurality of mounting holes are disposed in the mounting portion radially to either side of the ring. The showerhead provides controlled thermal transfer between the showerhead and chamber lid resulting in less deposition on the showerhead.
Owner:APPLIED MATERIALS INC

Apparatus for delivering, repositioning and/or retrieving self-expanding stents

Apparatus for delivering and deploying a stent formed of a shape memory alloy to a desired position in a tubular area of the body, and / or for repositioning and / or retrieving a stent formed of a two-way shape memory alloy. An arrangement is provided by which the temperature of the stent is locally adjusted during delivery, repositioning and / or retrieval in a safe and controlled manner by engagement with an expandable and collapsible thermal transfer member situated on a catheter assembly.
Owner:INTEK TECH

Method for carrying out a biochemical protocol in continuous flow in a microreactor

Devices and methods for carrying out a chemical or biochemical protocol are disclosed. In one embodiment, the chemical or biochemical protocol is performed by cycling at least one thermal transfer member between at least two temperatures while liquid samples on which the chemical or biochemical protocol is to be performed are continuously moving through at least one temperature regulated zone upon which the at least one thermal transfer member acts. In some embodiments, the device comprises a sample transport member that comprises liquid samples in sample receiving regions. The sample transport member moves the samples continuously through a temperature regulated zone which cycles between at least two temperatures while the liquid samples are moving through a temperature regulated zone on which at least one thermal transfer member acts. In some embodiments, the sample receiving regions comprise wells, hydrophillic films or hydrophillic filaments.
Owner:SERONO GENETICS INST SA +1

Controlled cooling methods and apparatus for laser sintering part-cake

The invention is a method for controllably cooling at least a portion of a part-cake from a laser sintering system to minimize cool down time, maximize throughput, and minimize thermal gradients within the part-cake. The method generally comprises forming one or more thermal transfer channels within the part-cake. The thermal transfer channels can include ducts and cooling fins in the part-cake surrounding the formed part. The method can further comprise removing unfused powder from the ducts and introducing cooling media into the ducts. The invention also includes a part-cake having thermal transfer channels formed therein and a laser sintering apparatus comprising a part-cake containing cylinder having permanent fittings therein for receiving terminal portions of thermal transfer channels formed in the part-cake.
Owner:3D SYST INC

Nano carbon materials for enhancing thermal transfer in fluids

A novel fluid heat transfer agent suitable for use in a closed heat transfer system, for example, wherein energy is transferred between an evaporator and a condenser in heat exchange relationship with the heat transfer agent that is caused to flow from one to the other. The novel heat transfer agent is a complex comprising a body of heat transfer fluid, for example, ethylene glycol or water, having suspended therein carbon nanoparticles in a quantity sufficient to enhance the thermal conductivity of the body of heat transfers fluid, per se. The carbon nanoparticles are selected from carbon in the form of sp<2 >type and sp<3 >type bonding and preferably comprise nanotubes or fullerenes and may have a coupling agent bonded thereto or enclosed therein when the nanotube or fullerene forms a hollow capsule. The coupling agent may be a polar organic group covalently bonded to the carbon nanoparticles and miscible in the fluid medium.
Owner:MATERIALS & ELECTROCHEM RES

Thermal flow simulation for casting/molding processes

A numerical procedure for simulating the behavior of incompressible, viscous fluid in a casting / molding process. The method is based on classical fluid dynamic equations and uses control volume-finite element and numerical techniques to solve the momentum and energy equations to obtain solution for the variable parameters. The method incorporates five additional modules which simulate fluid flow in the shot sleeve, heat transfer between the die and the heat transfer fluid, die cooling by lubricant, formation of mend line. These additional simulation modules produce realistic boundary conditions, and replace many of the assumptions that would have to be made, to solve the governing equations. These added improvements ensure a faster convergence of the numerical solution and a more realistic simulation of the die casting process.
Owner:MERCURY MARINE

Phase change memory devices, method for encoding, and methods for storing data

Phase change memory cells including a phase change media can be encoded using a source of energy that is not integral with the memory cell. External sources of energy include thermal heads, such as those used in direct thermal printing or thermal transfer printing and sources of electromagnetic radiation, such as lasers. Such types of phase change memory devices can be associated with substrates that include thermochromic materials or are suitable for thermal transfer printing so that the memory cells can be encoded and print media applied to the substrate using the same source of thermal energy.
Owner:INTERMEC IP CORP

Quantum dot fluorescent inks

The present invention relates to inks and more particularly, to fluorescent ink formulations including quantum dots for various printing processes such as inkjet, flexographic, screen printing, thermal transfer, and pens. The inks include one or more populations of fluorescent quantum dots dispersed in polymeric material, having fluorescence emissions between about 450 nm and about 2500 nm; and a liquid or solid vehicle. The vehicle is present in a ratio to achieve an ink viscosity, surface tension effective, drying time and other printing parameters used for printing processes.
Owner:EVIDENT TECH

LED light fixture

An LED light fixture with enhanced thermal management. The fixture may be in a surface-mounted or a recessed configuration. The LED is attached with thermally-conductive material, such as thermal transfer tape, to a heat sink or housing. The heat sink may comprise a number of cooling fins to radiate heat, as well as a number of openings to promote cooling air flow. A variety of reflector assemblies can be used for different optical and aesthetic configurations. One or more lenses may be used.
Owner:GROVE DOUGLAS

System and method for thermal management

InactiveUS6939392B2Increase in exploitable cooling capacity of fuelImprove cooling effectCombination devicesSemi-permeable membranesOxygenTurbine
A system for the management of thermal transfer in a gas turbine engine includes a heat generating sub-system in operable communication with the engine, a fuel source to supply a fuel, a fuel stabilization unit to receive the fuel from the fuel source and to provide the fuel to the engine, and a heat exchanger in thermal communication with the fuel to transfer heat from the heat generating sub-system to the fuel. A method of managing thermal transfer in an aircraft includes removing oxygen from a stream of a fuel fed to an engine used to drive the aircraft, transferring heat from a heat generating sub-system of the aircraft to the fuel, and combusting the fuel. A system for the thermal management of an aircraft provides for powering the aircraft, supplying a fuel deoxygenating the fuel, and transferring heat between a heat generating sub-system of the aircraft and the fuel.
Owner:RAYTHEON TECH CORP

Direct chip-cooling through liquid vaporization heat exchange

An apparatus for and method of cooling an electronic module comprising a heat sink enclosure placed directly over a chip or substrate in a flip chip package. The heat sink enclosure has a plurality of cooling fins extending from within the cavity of the enclosure. A liquid sealed inside the enclosure is trapped within a thermal transfer means, preferably a metal wick, which sits directly on a chip or substrate. As the chip or substrate heats up, heat is transferred to the thermal transfer means which in turn heats the liquid to its heat of vaporization. The vapors of the liquid rise and condense on the cooling fins and the heat is absorbed by the enclosure and conducted to an outside surface of the enclosure and dissipated. Cooling fins on an exterior surface of the enclosure further reduces the thermal resistance to enhance cooling.
Owner:IBM CORP

Printing apparatus

A printing apparatus, having a housing in which a thermal transfer printhead station and an ink jet printhead station are mounted, is used for printing indica on a medium, such as tickets, tags and the like. The thermal transfer printhead station is used for printing a monochrome colored indicia on the print medium and the ink jet printhead station is used for printing a single monochrome colored indicia or a plurality of monochrome colored indicia on the print medium. A decoupling station is mounted between the thermal transfer printhead station and the ink jet printhead station for accumulating print medium therein. A sensor is associated with the decoupling station for sensing the amount of print medium accumulated therein. In use, the print medium is passed through the thermal transfer printhead station and a monochrome colored indicia is printed thereon. Thereafter, the print medium is accumulated in the decoupling station and when a predetermined amount of print medium is accumulated therein, the print medium is passed to the ink jet printhead station and a plurality of monochrome colored indicia may be printed thereon or a single monochrome colored indicia is printed thereon. The printed-on medium is thereafter ejected from the printing apparatus. A die cutting or severing structure may be provided for die cutting or severing the print medium.
Owner:ZEBRA TECH CORP

Liquid-cooled electronics apparatus and methods of fabrication

Liquid-cooled electronics apparatuses and methods are provided. The cooled electronics apparatuses include a liquid-cooled cold rail and an electronics subassembly. The liquid-cooled cold rail has a thermally conductive structure and a coolant-carrying channel extending within and cooling the thermally conductive structure. The electronics subassembly includes an electronics card(s) and one or more thermal transfer plates. The electronics card(s) includes electronic devices to be cooled, and the one or more thermal transfer plates are each rigidly affixed to one or more electronic devices of the electronics card(s). Each thermal transfer plate is thermally conductive and couples the electronics subassembly to the liquid-cooled cold rail to thermally interface the one or more electronic devices to the liquid-cooled cold rail to facilitate cooling of the electronic devices. In one embodiment, the electronics subassembly includes multiple interleaved electronics cards and thermal transfer plates.
Owner:INT BUSINESS MASCH CORP

Nano carbon materials for enhancing thermal transfer in fluids

A novel fluid heat transfer agent suitable for use in a closed heat transfer system, for example, wherein energy is transferred between an evaporator and a condenser in heat exchange relationship with the heat transfer agent that is caused to flow from one to the other. The novel heat transfer agent is a complex comprising a body of heat transfer fluid, for example, ethylene glycol or water, having suspended therein carbon nanoparticles in a quantity sufficient to enhance the thermal conductivity of the body of heat transfers fluid, per se. The carbon nanoparticles are selected from carbon in the form of sp2 type and sp3 type bonding and preferably comprise nanotubes or fullerenes and may have a coupling agent bonded thereto or enclosed therein when the nanotube or fullerene forms a hollow capsule. The coupling agent may be a polar organic group covalently bonded to the carbon nanoparticles and miscible in the fluid medium.
Owner:MATERIALS & ELECTROCHEM RES

Liquid Cooling System Cold Plate Assembly

A cold plate assembly consisting of a thermally conductive base component with an insert having a high thermal transfer characteristic adapted for contacting the surface of a heat source on one side. The surface of the base component opposite from the insert is surrounding by a housing defining an enclosed volume through with a flow of liquid coolant is directed. Inlet baffles adjacent to a fluid inlet in the housing direct the incoming flow of liquid coolant towards the surface of the base component in proximity to the insert, facilitating an efficient transfer of thermal energy from the heat source to the liquid coolant through the insert and base component. Optional extensions or fins extending into the liquid coolant contained in the enclosed volume from the surface of the base component further facilitate the transfer of thermal energy from the heat source.
Owner:ASETEK DANMARK

Method and arrangement for control of the printing of a thermotransfer printing device

In a method and an arrangement for controlling printing by a thermotransfer printing apparatus with relative movement between a thermotransfer print head and a print medium, a microprocessor that provides pixel energy data to a pixel energy memory by making an energy value calculation and by coding, and a print data controller prepares the pixel energy data by decoding during the printing in a number (corresponding to the pixel energy value) of binary pixel data each with the same binary value. The print data controller includes at least one pixel energy data preparation unit, a DMA controller, an address generator, a printer controller and a phase counter. The DMA controller allows an access to the pixel energy data stored in the pixel energy memory as code in order to provide the pixel energy data in print columns to the at least one pixel energy data preparation unit. The address generator generates addresses for selection of the buffered code during each phase of a number of phases. The phase counter supplies a phase count value to a phase data preparation unit in which the code value A and phase count value B are compared in order to generated binary pixel data, which are serially supplied from the output D to at least one shift register of the thermotransfer print head.
Owner:FRANCOTYP POSTALIA

Method for carrying out a biochemical protocol in continuous flow in a microreactor

Devices and methods for carrying out a chemical or biochemical protocol are disclosed. In one embodiment, the chemical or biochemical protocol is performed by cycling at least one thermal transfer member between at least two temperatures while liquid samples on which the chemical or biochemical protocol is to be performed are continuously moving through at least one temperature regulated zone upon which the at least one thermal transfer member acts. In some embodiments, the device comprises a sample transport member that comprises liquid samples in sample receiving regions. The sample transport member moves the samples continuously through a temperature regulated zone which cycles between at least two temperatures while the liquid samples are moving through a temperature regulated zone on which at least one thermal transfer member acts. In some embodiments, the sample receiving regions comprise wells, hydrophillic films or hydrophillic filaments.
Owner:SERONO GENETICS INST SA +1

Carbon nanoparticle-containing lubricant and grease

The present invention relates to processes for preparing a stable suspension of carbon nanoparticles in a thermal transfer fluid to enhance thermal conductive properties, viscosity, and lubricity. One process is to disperse carbon nanoparticles directly into a thermal transfer fluid and other additives in the present of surfactants with intermittent ultrasonication. The second process is carried out in three stages. First, carbon nanoparticles are dispersed into a volatile solvent. Then, a thermal transfer fluid, surfactants, and other additives are added into this intermediate dispersion and mixed thoroughly. At last, the volatile solvent is removed to produce a uniformly dispersed nanofluid. The third process is to disperse carbon nanoparticles at an elevated temperature into a homogeneous mixture of surfactants and other additives in a thermal transfer fluid with help of a physical agitation. The present invention also relates to compositions of carbon nanoparticle nanofluids, such as nanolubricants and nanogreases. The nanofluid of the present invention is a dispersion of carbon nanoparticles, particularly carbon nanotubes, in a thermal transfer fluid in the present of surfactants. Addition of surfactants significantly increases the stability of nanoparticle dispersion. For nanogreases, carbon nanoparticles function both as a thickener to modulate viscosity and as a solid heat transfer medium to enhance thermal conductivity and high temperature resistance.
Owner:SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY

Non-electrically conductive thermal dissipator for electronic components

A thermal dissipator disposable in a heat transfer relationship with a heat-generating source, such as an electronic component, which is mounted on a substrate, such as a printed circuit board. The dissipator includes a thermal dissipation member having a top and bottom surface, and a pressure sensitive adhesive layer disposed on the thermal dissipation member to cover at-least a portion of the bottom surface thereof. The dissipation member is formed of a thermally-conductive, electrically-nonconductive ceramic material. The pressure sensitive adhesive layer has an inner surface adhered to the bottom surface of the thermal dissipation member, and an outer surface bondable to a heat transfer surface of the source for attaching the dissipator to the source in a heat transfer relationship therewith.
Owner:PARKER INTANGIBLES LLC

Carbon naoparticle-containing hydrophilic nanofluid

InactiveUS20070158610A1Stabilize nanoparticle dispersionImprove thermal conductivityHeat-exchange elementsCarbon nanotubeHydrophile
The present invention relates to a process for preparing a stable suspension of carbon nanoparticles in a hydrophilic thermal transfer fluid to enhance thermal conductive properties and other characteristics such as freezing point of an antifreeze coolant. The process involves the step of dispersing carbon nanoparticles directly into a mixture of a thermal transfer fluid and other additives in the present of surfactants with intermittent ultrasonication. The present invention also relates to the composition of a hydrophilic nanofluid, which comprises carbon nanoparticles, particularly carbon nanotubes, a hydrophilic thermal transfer fluid, and at least one surfactant. Addition of surfactants significantly increases the stability of nanoparticle dispersion.
Owner:SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY

Hand-held, heat sink cryoprobe, system for heat extraction thereof, and method therefore

A cryoprobe system utilizing a monolithic, insulated, hand-held thermal mass having an exposed tip for cryosurgical applications and the like, as well as a heat extraction base configured to interface with the thermal mass to quickly and efficiently reduce the heat of the thermal mass to cryogenic temperatures. The heat extraction base of the preferred embodiment of the present invention is configured to interface with the tip of the thermal mass, such that the tip plugs in securely to the base, to permit an efficient thermal transfer of heat from the thermal mass through the base via a heat exchange system communicating with the base which employs a low temperature cryo-refrigeration unit. The cryo-refrigeration unit may comprise a single low temperature cooling unit to reduce the temperature of the base to around minus one hundred degrees Centigrade utilizing off-the-shelf cryogenic refrigeration methods, or may utilize a series of more conventional refrigeration units in a primary and secondary heat extraction arrangement, which method may further utilize thermocouple or Peltier effect device assist to further reduce the temperature of the heat extraction base to the required temperature. Also claimed is the method of cryosurgery employing the device(s) of the present invention.
Owner:CRYOPEN

Carbon nanoparticle-containing hydrophilic nanofluid with enhanced thermal conductivity

The present invention relates to a nanofluid that contains carbon nanoparticles, metal oxide nanoparticles and a surfactant in a thermal transfer fluid. The present invention also relates to processes for producing such a nanofluid with enhanced thermal conductive properties.
Owner:SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY

Systems and Methods of Thermal Transfer and/or Storage

ActiveUS20110162829A1System design difficultSolar heating energySolar heat devicesEngineeringInput device
Systems, methods, and computer-implemented embodiments consistent with the inventions herein are directed to storing and / or transferring heat. In one exemplary implementation, there is provided a system for transferring / storing heat comprised of a heat exchange / storage apparatus including a chamber, and a heat input device adapted to heat / provide a vapor into the chamber. Other exemplary implementations may include one or more features consistent with a heat output device through which a working medium / fluid passes, a thermal storage medium located within the chamber, and / or a heat exchange system that delivers a heat exchange medium / fluid to the thermal storage medium.
Owner:BLUELAGOON TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products