Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

661 results about "Carbon Nanoparticles" patented technology

Carbon nanoparticles are nanosized carbon elements created through various methods including carbonization, heating, activation, and grinding. Nanoparticles of any type usually have a diameter less than 100 nm. Carbon nanoparticles have an electronic configuration of [He] 2s2 2p2.

Carbon nanoparticle-containing lubricant and grease

The present invention relates to processes for preparing a stable suspension of carbon nanoparticles in a thermal transfer fluid to enhance thermal conductive properties, viscosity, and lubricity. One process is to disperse carbon nanoparticles directly into a thermal transfer fluid and other additives in the present of surfactants with intermittent ultrasonication. The second process is carried out in three stages. First, carbon nanoparticles are dispersed into a volatile solvent. Then, a thermal transfer fluid, surfactants, and other additives are added into this intermediate dispersion and mixed thoroughly. At last, the volatile solvent is removed to produce a uniformly dispersed nanofluid. The third process is to disperse carbon nanoparticles at an elevated temperature into a homogeneous mixture of surfactants and other additives in a thermal transfer fluid with help of a physical agitation. The present invention also relates to compositions of carbon nanoparticle nanofluids, such as nanolubricants and nanogreases. The nanofluid of the present invention is a dispersion of carbon nanoparticles, particularly carbon nanotubes, in a thermal transfer fluid in the present of surfactants. Addition of surfactants significantly increases the stability of nanoparticle dispersion. For nanogreases, carbon nanoparticles function both as a thickener to modulate viscosity and as a solid heat transfer medium to enhance thermal conductivity and high temperature resistance.
Owner:SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY

Method for preparing carbon nanoparticle/two-dimensional layered titanium carbide composite material

The invention relates to a method for preparing a carbon nanoparticle/two-dimensional layered titanium carbide composite material. The method includes the steps that a two-dimensional layered titanium carbide nano material MXene (Ti3C2/Ti2C) is prepared through hydrofluoric acid corrosion; the material MXene (Ti3C2/Ti2C) and monosaccharide are processed through ultrasonic treatment, vacuum impregnation, hydrothermal treatment and other steps, so carbon nanoparticles are generated between layers and on the surface of the MXene (Ti3C2/Ti2C) material, and the carbon nanoparticle/two-dimensional layered titanium carbide composite material is obtained. Raw materials which are not toxic and easy to obtain are adopted, the preparation process is simple, the technology is controllable, cost is low, repeatability is good, the layered structure of the prepared two-dimensional layered MXene (Ti3C2/Ti2C) is uniform and complete, the carbon nanoparticles are evenly distributed between the layers and on the surface of the MXene (Ti3C2/Ti2C) material, and the prepared composite material has the advantages of being large in specific surface area, good in conductivity, good in hydrophilic property and the like and can be used in the fields such as functional ceramic, wave-absorbing materials, supercapacitors and ion batteries.
Owner:NORTHWESTERN POLYTECHNICAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products