Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

9360 results about "Pore diameter" patented technology

Pore diameter. [′pȯr dī‚am·əd·ər] (design engineering) The average or effective diameter of the openings in a membrane, screen, or other porous material.

Composite molecular sieve and hydrodesulfurization catalyst prepared with composite molecular sieve as carrier

The invention provides a composite molecular sieve and a hydrodesulfurization catalyst prepared with the composite molecular sieve as a carrier. According to the composite molecular sieve and the hydrodesulfurization catalyst, the Beta-FDU-12 composite molecular sieve is of a bimodal porous structure, namely a Beta micropore and an FDU-12 mesoporous, the superficial area of the composite molecular sieve is 800-1000m<2>.g<-1>, the pore diameter is 14-25 nm, and the pore volume is 0.4-0.9 cm<3>.g<-1>.The hydrodesulfurization catalyst prepared with the Beta-FDU-12 composite molecular sieve as the carrier is outstanding in performance, the yield of FCC diesel oil can be higher than 99%, the denitrification percent can be higher than 98%, and the sulphur content is lower than 10 ppm.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Embolic filters having multiple layers and controlled pore size

The invention provides a device for filtering emboli from blood flowing through a lumen defined by the walls of a vessel in a patient's body comprising a filter element. The filter element is expandable from a collapsed configuration when the filter element is restrained to an expanded configuration when the filter element is unrestrained. When the filter element is in the expanded configuration, the average pore size is from 30 to 300 microns and the standard deviation of the pore size is less than 20 percent of the average pore size. The filter element has two or more filtering layers, each filtering layer having pores, each filtering layer being adjacent to at least one other filtering layer, and at least one of the filtering layers being made of a self-expanding material.
Owner:TYCO HEALTHCARE GRP LP

Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

The ability to design and construct solid-state materials with pre-determined structures is a grand challenge in chemistry. An inventive strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that has allowed the design of porous structures in which pore size and functionality can be varied systematically. MOF-5, a prototype of a new class of porous materials and one that is constructed from octahedral Zn—O—C clusters and benzene links, was used to demonstrate that its 3-D porous system can be functionalized with the organic groups, —Br, —NH2, —OC3H7, —OC5H11, —H4C2, and —H4C4, and its pore size expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. The ability to direct the formation of the octahedral clusters in the presence of a desired carboxylate link is an essential feature of this strategy, which resulted in the design of an isoreticular (having the same framework topology) series of sixteen well-defined materials whose crystals have open space representing up to 91.1% of the crystal volume, and homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. Unlike the unpredictable nature of zeolite and other molecular sieve syntheses, the deliberate control exercised at the molecular level in the design of these crystals is expected to have tremendous implications on materials properties and future technologies. Indeed, data indicate that members of this series represent the first monocrystalline mesoporous organic / inorganic frameworks, and exhibit the highest capacity for methane storage (155 cm3 / cm3 at 36 atm) and the lowest densities (0.41 to 0.21 g / cm3) attained to date for any crystalline material at room temperature.
Owner:RGT UNIV OF MICHIGAN

Hydrotreating catalyst and preparation method thereof

The invention discloses a bulk hydrotreating catalyst and a preparation method thereof. The catalyst comprises three active metal components, namely Mo, W and Ni, and the sum of active metal oxides is 30 to 70 weight percent. In the method, a proper amount of water-soluble nitrogen-containing compound is added in the bulk catalyst gelatinating process, the pore structure of the catalyst is improved, more metal active sites are exposed on the surface of the catalyst, the utilization rate of active metals is improved, the catalyst has obviously high activity compared with the common bulk catalyst under the condition of the same metal content, and the consumption of the active metals for the common bulk catalyst can be reduced and the preparation cost of the catalyst can be reduced under thecondition of the equivalent activity. In addition, the bulk catalyst has increased pore diameter and pore volume, the Ni-W high active center is fully utilized, complicated macromolecules are easier to contact the active center, and the effect is particularly more obvious when the catalyst treats distillates with high macromolecule content.
Owner:CHINA PETROLEUM & CHEM CORP +1

Porous Film and Multilayer Assembly Using the Same

InactiveUS20090008142A1Satisfactorily flexibleImprove porosityVacuum evaporation coatingSputtering coatingInterfacial delaminationPorous layer
[Object] To provide a multilayer assembly that excels in pore properties, is flexible, and is satisfactorily handled and processed; and a method of producing the multilayer assembly.[Solving Means] A multilayer assembly includes a base and, arranged on at least one side thereof, a porous layer and has a large number of continuous micropores with an average pore diameter of 0.01 to 10 μm. The multilayer assembly suffers from no interfacial delamination between the base and the porous layer when examined in a tape peeling test according to the following procedure:Tape Peeling TestA 24-mm wide masking tape [Film Masking Tape No. 603 (#25)] supplied by Teraoka Seisakusho Co., Ltd. is applied to a surface of the porous layer of the multilayer assembly and press-bonded thereto with a roller having a diameter of 30 mm and a load of 200 gf to give a sample; and the sample is subjected to a T-peel test with a tensile tester at a peel rate of 50 mm / min.
Owner:DAICEL CHEM IND LTD

Porous sintered body, method of manufacturing porous sintered body, and method of manufacturing exhaust gas purifying apparatus

A method of manufacturing a porous sintered body includes mixing at least two groups of silicon carbide particles and a pore forming material having an average particle diameter Y μm to obtain a molding material. The at least two groups of silicon carbide particles have different average particle diameters and have a first group of silicon carbide particles whose blending quantity by weight in the molding material is greatest among the at least two groups of silicon carbide particles. The first group have an average particle diameter X μm. The relationships 15≦X, 0.5·X≦Z≦0.9·X, and 0.8·Z≦Y≦1.8·Z are satisfied, wherein Z μm is an average pore diameter of the porous sintered body no less than 10 μm and no greater than 20 μm.
Owner:IBIDEN CO LTD

Tissue-engineering scaffolds containing self-assembled-peptide hydrogels

The present invention is directed to tissue-engineering scaffolds containing both a microporous scaffold made from a biocompatible material suitable for use in tissue-engineering scaffolds and a nanofiberous, nanoporous hydrogel formed from a self-assembling peptide, where at least a portion of the hydrogel is disposed within the pores of the microporous scaffold, thus providing tissue-engineering scaffolds having average pore diameters in the nanometer range and that provide both mechanical properties suitable for implantation into a body of a mammal and excellent tissue response once implanted in the body.
Owner:ADVANCED TECH & REGENERATIVE MEDICINE

Skeletal iron catalyst having improved attrition resistance and product selectivity in slurry-phase synthesis processes

Particulate skeletal iron catalyst is provided which contain at least about 50 wt. % iron with the remainder being a minor portion of a suitable non-ferrous metal and having characteristics of 0.062-1.0 mm particle size, 20-100 m2/g surface area, and 10-40 nm average pore diameter. Such skeletal iron catalysts are prepared and utilized for producing synthetic hydrocarbon products from CO and H2 feeds by Fischer-Tropsch synthesis process. Iron powder is mixed with non-ferrous powder selected from aluminum, antimony, silicon, tin or zinc powder to provide 20-80 wt. % iron content and melted together to form an iron alloy, then cooled to room temperature and pulverized to provide 0.1-10 mm iron alloy catalyst precursor particles. The iron alloy pulverized particles are treated with NaOH or KOH caustic solution at 30-95° C. temperature to extract and/or leach out most of the non-ferrous metal portion, and then screened and treated by drying and reducing with hydrogen and to provide the smaller size skeletal iron catalyst material. Such skeletal iron catalyst is utilized with CO+H2 feedstream for Fischer-Tropsch reactions in either a fixed bed or slurry bed type reactor at 180-350° C. temperature, 0.5-3.0 mPa pressure and gas hourly space velocity of 0.5-3.0 L/g Fe/hr to produce desired hydrocarbon products.
Owner:INST OF COAL CHEM ICCCHINESE ACADEMY OF SCI +1

Porous thin film and preparation method for porous thin film

ActiveCN104874798APore diameterFormability
The invention discloses a porous thin film and a preparation method for the porous thin film which are easy to achieve the high porosity, guarantee the possible formability in preparation and are simple and practical in preparation technology. The thickness of the porous thin film is 5-200Mum, the average pore size is 0.05-100Mum, and the porosity is 25-75%. The preparation method comprises the steps that 1, a support film is obtained, the support film is provided with a porous-shaped first material, and preliminary pores are formed in the first material; 2, a slurry is prepared, and the slurry contains a powdered second material; 3, the support film is coated with the slurry and then made into a rough-body; 4, the rough-body is sintered, reaction happens between the first material and the second material in sintering, a porous third material is generated, and meanwhile secondary pores communicated with the preliminary pores are generated; 5, the porous thin film is obtained by cooling after the sintering. Due to the fact that at least the preliminary pores and the secondary pores are contained, and therefore the high porosity of the porous thin film is each to be achieve.
Owner:CHENGDU INTERMENT TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products