Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

519 results about "Mean diameter" patented technology

Mean diameter. noun. The average of two measurements of the diameter taken at right angles to each other.

Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby

A composite filtration medium web of fibers containing a controlled dispersion of a mixture of sub-micron and greater than sub-micron diameter polymeric fibers is described. The filtration medium is made by a two dimensional array of cells, each of which produces a single high velocity two-phase solids-gas jet of discontinuous fibers entrained in air. The cells are arranged so that the individual jets are induced to collide in flight with neighboring jets in their region of fiber formation, to cause the individual nascent fibers of adjacent jets to deform and become entangled with and partially wrap around each other at high velocity and in a localized fine scale manner before they have had an opportunity to cool to a relatively rigid state. The cells are individually adjusted to control the mean diameters, lengths and trajectories of the fibers they produce. Certain cells are adjusted to generate a significant percentage of fibers having diameters less than one micron diameter, and which are relatively shorter in length and certain other cells are adjusted to generate a significant percentage of structure-forming reinforcing fibers having diameters greater than one micron diameter which are relatively longer in length. By employing appropriate close positioning and orientation of the cells in the array, the sub-micron fibers are caused to promptly entangle with and partially wrap around the larger reinforcing fibers. The larger fibers thereby trap and immobilize the sub-micron diameter fibers in the region of formation, to minimize the tendency of sub-micron diameter fibers to clump, agglomerate, or rope together in flight. Also, the larger fibers in flight are made to form a protective curtain to prevent the sub-micron fibers from being carried off by stray air currents.
Owner:THE PROCTER & GAMBLE COMPANY

Delivery of oral drugs

InactiveUS20010020147A1Comfortable and convenient motionComfortable and convenient feelPowder deliveryLiquid surface applicatorsMean diameterHuman patient
Disclosed is a system for delivery of a drug comprising a multiple unit dosing device comprising a housing and an actuator, said device containing multiple doses of multiparticulates comprising drug particles, said device upon actuation delivering a unit dose of said multiparticulates, said drug particles having a mean diameter of greater than 10 mum to about 1 mm such that an effective dose of said drug cannot be delivered into the lower lung of a human patient. Also disclosed are novel methods, devices and dosage forms for delivering a drug.
Owner:PHARMAKODEX LTD

Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby

A composite filtration medium web of fibers containing a controlled dispersion of a mixture of sub-micron and greater than sub-micron diameter polymeric fibers is described. The filtration medium is made by a two dimensional array of cells, each of which produces a single high velocity two-phase solids-gas jet of discontinuous fibers entrained in air. The cells are arranged so that the individual jets are induced to collide in flight with neighboring jets in their region of fiber formation, to cause the individual nascent fibers of adjacent jets to deform and become entangled with and partially wrap around each other at high velocity and in a localized fine scale manner before they have had an opportunity to cool to a relatively rigid state. The cells are individually adjusted to control the mean diameters, lengths and trajectories of the fibers they produce. Certain cells are adjusted to generate a significant percentage of fibers having diameters less than one micron diameter, and which are relatively shorter in length and certain other cells are adjusted to generate a significant percentage of structure-forming reinforcing fibers having diameters greater than one micron diameter which are relatively longer in length. By employing appropriate close positioning and orientation of the cells in the array, the sub-micron fibers are caused to promptly entangle with and partially wrap around the larger reinforcing fibers. The larger fibers thereby trap and immobilize the sub-micron diameter fibers in the region of formation, to minimize the tendency of sub-micron diameter fibers to clump, agglomerate, or rope together in flight. Also, the larger fibers in flight are made to form a protective curtain to prevent the sub-micron fibers from being carried off by stray air currents.
Owner:THE PROCTER & GAMBLE COMPANY

Light-emitting device and method for manufacturing the same

A nanometer size roughened structure is formed on a surface of a light-emitting element, and luminous efficiency is improved. The roughened structure on the surface of the light-emitting element of the invention is formed into the following shape such that the refractive index smoothly changes: (1) the mean diameter of projections on the roughened surface is smaller than the light wavelength; (2) a pitch of the roughened surface is irregular; and (3) positions of the top and bottom of the roughened surface are distributed from their mean values within the light wavelength in order to give a smooth gradient of the refractive index. The surface of such light-emitting element is obtained by forming a thin film on the surface of the light-emitting element using a resin composition which contains a block copolymer or graft copolymer and forms a micophase-separated structure in a self-organization manner; selectively removing at least one phase of the microphase-separated structure of the thin film formed on the surface; and etching the surface of the light-emitting element using the remaining phase as an etching mask.
Owner:AGILENT TECH INC

Melt-blown nonwoven fabric, process for producing same and the uses thereof

InactiveUS6207601B1Avoid undesirable oxidative processEliminate useLayered productsTobacco smoke filtersMean diameterPolymer science
The disclosure relates to a melt-blown non-woven fabric based on cellulose esters, with fibers of mean diameter less than about 10 microns. The fabric contains 0-10 wt. % extractable softener, has a reflection factor determined according to DIN 53 145 Part I (1992) of more than 60% and the cellulose ester has a degree of substitution DS of about 1.5-3.0. The softener is preferably water-extractable. A melt-blown non-woven fabric is produced with the cellulose ester as follows: a cellulose ester, cellulose acetate, with a DS of about 1.5-3.0, in particular 1.7-2.7, is mixed with softener in a weight ratio of about 2:1 to 1:4 and simultaneously heated and melted. The mixture of softener and cellulose ester has a melting index MFI (210 / 2.16) according to DIN 53 735 of about 400 to 5 g / 10 min., in particular 300 to 50 g / 10 min. The melt is worked in a melt-blown spinning device into a melt-blown non-woven fabric and the softener is then extracted with a softener solvent to leave a proportion of 0-10 wt. %. The melt-blown non-woven fabric is especially suitable as a filter material.
Owner:RHODIA ACETOW AG

Light Emitting, Photovoltaic Or Other Electronic Apparatus and System

The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
Owner:UNITED STATES GOVERNMENT AS REPRESENTED BY THE ADMINISTATOR OF THE NAT AERONAUTICS & SPACE ADMINSTRATION +1

Nanocomposite coatings for threaded connections

Coating systems which provide corrosion resistance and, optionally, lubrication, for threaded connections are disclosed. The compositions comprise a first coating composition comprising polymer matrices of polyimides or epoxies which are modified with small amounts of a fluorine containing polymer. Also present in the coating compositions are corrosion inhibiting agents and inorganic particles having a mean diameter of between approximately 10 nm and 10 μm. Solid lubricants, which may include at least one of PTFE, HDPE, Graphite, and MoS2, are optionally added to provide the first coating with a low coefficient of friction. The coating systems may further comprise a second coating composition, comprising a solid lubricant dispersed within an epoxy resin and a solvent. The first and second coating compositions are deposited on at least a portion of at least one of the pin and box members of the threaded connections.
Owner:TENARIS CONNECTIONS

Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substantially spherical substrate particles to the at least one first conductor; converting the substrate particles into a plurality of substantially spherical diodes; forming at least one second conductor coupled to the substantially spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.
Owner:NTHDEGREE TECH WORLDWIDE +1

Functional powders for oral delivery

In certain embodiments the invention is directed to a drug formulation for gastrointestinal deposition comprising a non-compressed free flowing plurality of particles comprising a core comprising a drug and a pharmaceutically acceptable excipient, said core overcoated with a functional coating, said drug particles having a mean diameter of greater than 10 μm to about 1 mm.
Owner:PHARMAKODEX LTD

Emulsion containing organosilicon-based portions of hollow spheres

The present invention relates to a composition in the form of an emulsion containing portions of hollow spheres of organosilicon-based material, the portions of hollow spheres having a mean diameter ranging from 0.05 to 10 μm. The invention also relates to physiologically acceptable emulsion compositions comprising hollow spheres, and to a process for fading out skin surface defects, in particular to reduce the sheen of the skin and / or to fade out pores, shadows under the eyes, marks, wrinkles and / or fine lines, comprising the topical application to the skin of the above-mentioned compositions.
Owner:LOREAL SA

Carbon nano-particle and method of preparing the same and transparent conductive polymer composite containing the same

The present invention relates to a novel carbon nano-particle and a novel method of preparing the same and a transparent, conductive polymer composite containing the same. The carbon nano-particle has the mean diameter of 1 through 50 nm and the shape of sphere, rod or others, which is a novel material not known in the relevant art. Because of a particle size less than ½ of the shortest wavelength of a visible ray, a transparent resin containing the carbon nano-particle can maintain the transparency. Furthermore, the carbon nano-particle has the excellent electric conductivity and the ferromagnetic property, and can be made by a novel, low cost method entirely different from those of fullerene and carbon nanotube.
Owner:DONG WOON INT

Anti-misuse oral microparticle medicinal formulation

The field of the present invention is that of solid microparticulate analgesic oral medicines. The invention is that of providing novel analgesic medicines which allow at the same time the prevention of misuse and of addiction to certain analgesics, and / or the control of variability in the plasma concentration and / or the facilitation of oral administration; and / or the combination of analgesics with one another and / or with one or more active ingredients in the same oral form. The medicine according to the invention comprises (i) anti-misuse means and a plurality of microcapsules with modified release of analgesic(s), having a mean diameter of between 50 and 600 μm, (ii) at least 1000 microcapsules per dose; it being possible for this medicine to be administered once or twice a day for analgesic purposes.
Owner:FLAMEL TECHNOLOGIES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products