Particles incorporating surfactants for pulmonary drug delivery

a technology of surfactants and particle containing substances, which is applied in the direction of peptide/protein ingredients, spray delivery, prosthesis, etc., can solve the problems of poor control, local toxic effects, phagocytosis of lung macrophages, etc., and achieves the effects of avoiding phagocytosis, effective carriers, and improving aerosolization properties

Inactive Publication Date: 2001-02-13
MASSACHUSETTS INST OF TECH
View PDF31 Cites 223 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, pulmonary drug delivery of macromolecules; these include protein denaturation during aerosolization, excessive loss of inhaled drug in the oropharyngeal cavity (often exceeding 80%), poor control over the site of deposition, irreproducibility of therapeutic results owing to variations in breathing patterns, the often too-rapid absorption of drug potentially resulting in local toxic effects, and phagocytosis by lung macrophages.
Slow release from a therapeutic aerosol can prolong the residence of an administered drug in the airways or acini, and diminish the rate of drug appearance in the bloodstream.
However, many drugs and excipients, especially proteins, peptides (Liu, R., et al., Biotechnol. Bioeng., 37: 177-184 (1991)), and biodegradable carriers such as poly(lactide-co-glycolides) (PLGA), are unstable in aqueous environments for extended periods of time.
This can make storage as a liquid formulation problematic.
However, among the disadvantages of DPF's is that powders of ultrafine particulates usually have poor flowability and aerosolization properties, leading to relatively low respirable fractions of aerosol, which are the fractions of inhaled aerosol that escape deposition in the mouth and throat.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Particles incorporating surfactants for pulmonary drug delivery
  • Particles incorporating surfactants for pulmonary drug delivery
  • Particles incorporating surfactants for pulmonary drug delivery

Examples

Experimental program
Comparison scheme
Effect test

example 1

Synthesis of Aerodynamically Light Poly[(p-carboxyphenoxy)-hexane anhydride] ("PCPH") Particles

Aerodynamically light poly[(p-carboxyphenoxy)-hexane anhydride] ("PCPH") particles were synthesized as follows. 100 mg PCPH (MW.about.25,000) was dissolved in 3.0 mL methylene chloride. To this clear solution was added 5.0 mL 1% w / v aqueous polyvinyl alcohol (PVA, MW .about.25,000, 88 mole % hydrolyzed) saturated with methylene chloride, and the mixture was vortexed (Vortex Genie 2, Fisher Scientific) at maximum speed for one minute. The resulting milky-white emulsion was poured into a beaker containing 95 mL 1% PVA and homogenized (Silverson Homogenizers) at 6000 RPM for one minute using a 0.75 inch tip. After homogenization, the mixture was stirred with a magnetic stirring bar and the methylene chloride quickly extracted from the polymer particles by adding 2 mL isopropyl alcohol. The mixture was continued to stir for 35 minutes to allow complete hardening of the microparticles. The hard...

example 2

Synthesis of Spray-Dried Particles

Aerodynamically Light Particles Containing Polymer and Drug Soluble in Common Solvent

Aerodynamically light 50:50 PLGA particles were prepared by spray drying with testosterone encapsulated within the particles according to the following procedures. 2.0 g poly (D,L-lactic-co-glycolic acid) with a molar ratio of 50:50 (PLGA 50:50, Resomer RG503, B.I. Chemicals, Montvale, N.J.) and 0.50 g testosterone (Sigma Chemical Co., St. Louis, Mo.) are completely dissolved in 100 mL dichloromethane at room temperature. The mixture is subsequently spray-dried through a 0.5 mm nozzle at a flow rate of 5 mL / min using a Buchi laboratory spray-drier (model 190, Buchi, Germany). The flow rate of compressed air is 700 nl. The inlet temperature is set to 30.degree. C. and the outlet temperature to 25.degree. C. The aspirator is set to achieve a vacuum of -20 to -25 bar. The yield is 51% and the mean particle size is approximately 5 .mu.m. Larger particle size can be achi...

example 3

Fabrication of PLGA microspheres by a Double Emulsion Process Which Encapsulate a Model High-Molecular-Weight Drug, FITC-Dextran.

Scanning electron microscopy "SEM" photographs showing surface morphology of microspheres (MS) made by the double emulsion process with and without the lung surfactant, DPPC were obtained. By SEM, the microspheres made with and without DPPC by the double emulsion process had very similar surface characteristics and size distribution, as confirmed by size distribution measurements, shown below in Table 1.

The efficient entrapment of DPPC within microspheres (83% of theoretical .+-.11% standard deviation, n=6) was confirmed by dissolving an aliquot of MS in chloroform and detecting the DPPC concentration in solution by the Stewart Assay, as shown in Table 1. Particles made by double emulsion with DPPC are easily resuspended in aqueous solution after lyophilization and are lump-free when dry as determined by light microscopy. Particles made by the double emuls...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
aerodynamic diameteraaaaaaaaaa
aerodynamic diameteraaaaaaaaaa
aerodynamic diameteraaaaaaaaaa
Login to view more

Abstract

Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g / cm3 and a mass mean diameter between 5 mum and 30 mum. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear alpha-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 mum, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung. The aerodynamically light particles incorporating a therapeutic agent may be effectively aerosolized for administration to the respiratory tract to permit systemic or local delivery of wide variety of therapeutic agents.

Description

BACKGROUND OF THE INVENTIONThe present invention relates generally to particles incorporating surfactants for use in drug delivery to the pulmonary system.Biodegradable particles have been developed for the controlled-release and delivery of protein and peptide drugs. Langer, R., Science 249: 1527-1533 (1990). Examples include the use of biodegradable particles for gene therapy (Mulligan, R. C., Science, 260: 926-932 (1993)) and for `single-shot` immunization by vaccine delivery (Eldridge et al., Mol. Immunol., 28: 287-294 (1991)).Aerosols for the delivery of therapeutic agents to the respiratory tract have been developed. Adjei, A. and Garren, J. Pharm. Res., 7: 565-569 (1990); and Zanen, P. and Lamm, J.-W. J. Int. J. Pharm., 114: 111-115 (1995). The respiratory tract encompasses the upper airways, including the oropharynx and larynx, followed by the lower airways, which include the trachea followed by bifurcations into the bronchi and bronchioli. The upper and lower airways are ca...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): A61K38/28A61K9/16A61K38/38A61K31/135A61K31/137A61K47/48
CPCA61K9/0073A61K9/1617A61K9/1623A61K9/1641A61K9/1647A61K9/1658A61K31/135A61K31/137A61K38/28A61K38/38
Inventor HANES, JUSTINEDWARDS, DAVID A.EVORA, CARMENLANGER, ROBERT
Owner MASSACHUSETTS INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products