Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4984 results about "Hexane" patented technology

Hexane /ˈhɛkseɪn/ is an alkane of six carbon atoms, with the chemical formula C₆H₁₄. The term may refer to any of the five structural isomers with that formula, or to a mixture of them. In IUPAC nomenclature, however, hexane is the unbranched isomer (n-hexane); the other four isomers are named as methylated derivatives of pentane and butane. IUPAC also uses the term as the root of many compounds with a linear six-carbon backbone, such as 2-methylhexane.

Polymers of ethylene and, optionally, copolymerizable esters, films using such polymers and stretch hood packaging processes using such films

The invention relates to a polymer comprising units derived from ethylene, said polymer having: a) a Melt Index of from 0.05 to 20 g/10 min as determined by ASTM-1238 Condition E; b) at least 10 per 1000 C-atoms of short chain branches, containing five carbon atoms or less, as determined by C13 NMR, and less than 3.5 mol %, of units derived from a copolymerizable ethylenically unsaturated ester, c) a density of from 0.90 to 0.94 g/cm3, preferably 0.91 to 0.935 g/cm3, especially 0.92 to 0.93 g/cm3 as determined by ASTM D1505, and d) a relaxation time as described herein of at least 10 s. Such polymers are obtainable by polymerization by free radical polymerization using a chain transfer agent that incorporates into the polymer chain such as an alpha-olefin, preferably propylene, as a chain transfer agent, preferably in a tubular reactor under circumstances to favor LCB formation in a down stream part of the tubular reactor.
The polymer may be used for stretch hood film, preferably as a blown film coextruded tube comprising: a) a core of the above polymer; and b) a skin layer, on each side of the core which may be of the same or different composition, comprising at least 60 wt % of an LLDPE having density of 0.91 to 0.94 g/cm3 as determined by ASTM-D 1238 Condition E and hexane extractables less than 1.5 wt %, said skin layer containing less than 7500 ppm of anti-block particulates and said film having an elastic recovery after a 100% stretch of at least 40% and providing a normalized holding force per 100 μm thickness pre-stretch at 85% stretch after an initial stretch of 100% of at least 20 N/50 mm at a deformation rate of less than 10% of the starting length per second.
Owner:EXXONMOBIL CHEM PAT INC

Selection and rational development of solvent systems in counter-current chromatograph

Application of a reference mixture of natural products for systematic analysis and comparison of the properties of biphasic solvent systems in counter-current/partition chromatography. Because the reference mixture is comprised of compounds with varying polarities, functional groups, and structural features it provides a rational method for mapping the optimal resolution polarity range of a particular solvent system. The mapping of optimal resolution polarity ranges of solvent systems provided for the description of the overall optimal resolution polarity range of a solvent system family, comprised of the same solvents in different proportions. By comparing the reference mixture performance in the individual members of a solvent system family, the solvent system that best functions as the representative of, or portal to, the solvent system families is determined. Use of the reference mixture also afforded a method to compare the overall optimal resolution polarity ranges of solvent system families. Based on performance of reference mixture chromatograms, the CCC properties of solvent systems, can be compared and their CCC potential examined. The methods of the invention employing the reference mixture provides was used to identify a quaternary solvent system, hexane/t-butylmethylether/acetonitrile/water (HterAcWat), which was found to be useful for CCC of mixtures containing natural products.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Crosslinked hyperbranched polyalcohol composite nano filter membrance and method of preparing the same

The invention discloses a crosslinking hyper branched polymer composite nanofiltration membrane as well as the preparation method thereof. The crosslinking hyper branched polymer composite nanofiltration membrane is prepared by taking an ultrafiltration membrane as a basement membrane and crosslinking hyper branched polymer as a selecting layer through hyper branched polymer and the interfacial polymerization of polybasic acid, polybasic acyl chloride, polybasic anhydride and polybasic amine; and the interfacial polymerization takes the mixed solution of water and ethanol as the water phase and n-hexane, n-heptane or n-octane as the organic phase. As the hyper branched polymer has the spheroidal structure, a plurality of nano-voids exist in the interior of the molecule, so as to enable the selecting layer of the crosslinking hyper branched polymer composite nanofiltration membrane to be looser, and leads the nanofiltration membrane to maintain high flux and retention rate under the lower operating pressure. The nanofiltration membrane can be used in the fields of medicament, foodstuff, environmental protection, etc. The composite nanofiltration membrane is applicable to the separation and the condensation of high valence ions, low valence ions, neutral particles, drugs, food additives, etc.
Owner:ZHEJIANG UNIV

Preparation method of aromatic polyamide film modified by ZIF-8 type metal-organic framework material

InactiveCN104209021AIncrease fluid channelFacilitate water permeation membraneSemi-permeable membranesPolymer scienceMetal-organic framework
The invention discloses a preparation method of an aromatic polyamide film modified by a ZIF-8 type metal-organic framework material. A ZIF-8 filling polyamide composite film is prepared on an ultrafiltration bottom film by an interfacial polymerization method, wherein nano-grade ZIF-8 particles are added into an m-phenylenediamine aqueous solution and/or a trimesoyl hexane solution; a polyamide ultrathin skin layer, to which ZIF-8 is added, is formed through interfacial polymerization. The preparation method has the advantages that by the use of a ZIF-8 nano-grade aperture and a three-dimensional multi-hole structure, the selectivity or the permeability of the aromatic polyamide film is improved; the prepared ZIF-8 filling polyamide composite film can serve as a nanofiltration or reverse osmosis film for removing organic matters from the aqueous solution; when the adding ratio of an organic phase or water phase solution, to which ZIF-8 is added, is 0.05-0.15% (w/v), the performance of the film is the highest, and the permeation flux and the retention rate can be increased at the same time; furthermore, the nanofiltration or reverse osmosis performance of the two-phase adding film is higher than that of a single-phase adding film.
Owner:BEIJING FORESTRY UNIVERSITY

Underwater super-oleophobic oil-water separation mesh membrane and preparation method thereof

The invention discloses an underwater super-oleophobic oil-water separation mesh membrane and a preparation method thereof. The oil-water separation mesh membrane is prepared by coating a micron-thickness chitosan-based polymer coating layer on the mesh wire of a fabric mesh with 100-400 meshes. The oil-water separation mesh membrane is provided with micrometer-scale meshes and the chitosan-based polymer coating layer is provided with protruding structures with a nanoscale width. The preparation method of the oil-water separation mesh membrane comprises the following steps of: (1) cleaning and drying the fabric mesh; (2) dissolving a chitosan-based polymer in acid solution and stirring evenly to obtain mixed solution; (3) immersing the cleaned and dried fabric mesh in the mixed solution, taking out and drying the fabric mesh; and (4) immersing the fabric mesh obtained by the step (3) in alkaline solution, taking out and drying the fabric mesh to obtain the oil-water separation mesh membrane. The oil-water separation mesh membrane provided by the invention has the advantages of large water flux, high oil-water separation speed and good oil-water separation effect, is applicable to treatment of sewage with high oil content, and has good separation effect on normal hexane, petroleum ether, dichloroethane, benzene, animal and vegetable oils and the like.
Owner:TSINGHUA UNIV

Heat-conducting electric insulation silicon rubber thermal interface material and preparation method thereof

The invention discloses a heat-conducting electric insulation silicon rubber thermal interface material and a preparation method thereof and belongs to the technical field of rubber nanocomposite materials. The preparation method comprises the following steps: treating graphene by employing a surfactant, ultrasonically dispersing the graphene into a relatively thin and uniform nano sheet structure, compounding the graphene with spherical aluminum oxide, adding compounded packing into raw silicon rubber dissolved by normal hexane for uniformly mixing, drying, adding a cross-linking agent, a catalyst and a polymerization inhibitor, vulcanizing and performing compression molding to obtain the heat-conducting electric insulation silicon rubber thermal interface material. The graphene is subjected to the surface treatment and is ultrasonically dispersed into a relatively thin sheet structure, and the formation of a heat-conducting network is promoted; moreover, due to the addition of a small amount of treated graphene, the heat-conducting performance can be greatly improved, the influence on the hardness of a composite material is small, and the composite material can reach an insulating level by controlling the amount of the graphene, so that the heat-conducting electric insulation silicon rubber thermal interface material can be applied to electronic products.
Owner:BEIJING UNIV OF CHEM TECH +1

Method for extracting high-purity squalene by taking olive oil as raw material

The invention relates to a method for extracting high-purity squalene by taking olive oil as a raw material. A technological route formed by adopting a secondary molecular distillation and silica gel column chromatography is as follows: an olive oil unsaponifiable substance is taken, squalene is separated and purified by using two stages of molecular distillation, primary molecular distillation is carried out under the conditions of the evaporation surface temperature of 100 to 200 DEG C, the systemic pressure of 0.001 to 0.01mbar and the scraping film rotor speed of 150 to 300rpm, and secondary molecular distillation is carried out to the obtained distillate; the secondary molecular distillation is carried out under the conditions of the evaporation surface temperature of 150 to 300 DEG C, the systemic pressure of 0.001 to 0.01mbar and the scraping film rotor speed of 200 to 350rpm, and the obtained distillate is a squalene crude product; ethyl acetate-normal hexane with different concentrations is used as a mobile phase to carry out gradient elution, the obtained eluent is collected according to time and a solvent is evaporated, the same fractions are merged through chromatographic detection, and the high-purity squalene can be obtained, wherein the content of the raw material olive oil of the squalene is enhanced from 3.6% to about 98%; and especially, by considering the requirement of industrialized production to select an extraction condition especially, the large-scale production of the squalene taking the olive oil as the raw material can be realized.
Owner:JIANGSU ZODIAC MARINE BIOTECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products