Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

133 results about "Porosimetry" patented technology

Porosimetry is an analytical technique used to determine various quantifiable aspects of a material's porous nature, such as pore diameter, total pore volume, surface area, and bulk and absolute densities. The technique involves the intrusion of a non-wetting liquid (often mercury) at high pressure into a material through the use of a porosimeter. The pore size can be determined based on the external pressure needed to force the liquid into a pore against the opposing force of the liquid's surface tension.

Catalyst and process for hydrocracking hydrocarbon-containing feedstocks

This invention relates to silico-aluminum substrates, catalysts, and the hydrocracking and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by elements of group VIB and group VIII of the periodic table and a non-zeolitic silica-alumina-based substrate that contains an amount of more than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and has the following characteristics: A mean pore diameter, measured by mercury porosimetry, encompassed between 20 and 140 Å, a total pore volume, measured by mercury porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a total pore volume, measured by nitrogen porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a BET specific surface area encompassed between 100 and 550 m<2>/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 140 Å, of less than 0.1 ml/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 160 Å, of less than 0.1 ml/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 200 Å, of less than 0.1 ml/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 500 Å, of less than 0.01 ml/g, an X diffraction diagram contains at least the main lines that are characteristic of at least one of the transition aluminas contained in the group that consists of the alpha, rho, chi, eta, gamma, kappa, theta and delta aluminas.
Owner:INST FR DU PETROLE

Porous carbons

Porous carbon is provided which is a carbonization and optionally an activation product of a precursor resin, which has a pore structure that, as estimated by nitrogen adsorption porosimetry, comprises micropores and mesopores/macropores, said micropores and mesopores/macropores being in a bimodal distribution with few pores of size 2-10 nm, and the mesopores/macropores providing escape routes for volatile products during carbonisation of the precursor resin.
The porous carbon can be made by a method which comprises (a) forming a precursor resin by reacting a nucleophilic component which comprises a phenolic compound or a phenol condensation prepolymer optionally with one or more modifying reagents with an electrophilic cross-linking agent selected from formaldehyde, paraformaldehyde, furfural and hexamethylene tetramine in solution in a pore former e.g. ethylene glycol so that a phase separation occurs between high molecular weight domains and voids of lower molecular weight material and the pore former increases the material in the voids and gives rise to the mesopores in the precursor resin; (b) removing the pore former from the precursor resin; and (c) carbonizing the precursor resin in an inert atmosphere at a temperature from 600° C. upwards, micropores developing during said carbonization so that the carbonized material comprises (a) micropores of diameter of up to 2 nm and (b) mesopores of diameter of 2-50 nm and optionally macropores of diameter >50 nm.
Owner:BRITISH AMERICAN TOBACCO (INVESTMENTS) LTD

Catalyst and process for hydrocracking hydrocarbon-containing feedstocks

This invention relates to silico-aluminum substrates, catalysts, and the hydrocracking and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by elements of group VIB and group VIII of the periodic table and a non-zeolitic silica-alumina-based substrate that contains an amount of more than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and has the following characteristics:A mean pore diameter, measured by mercury porosimetry, encompassed between 20 and 140 Å,a total pore volume, measured by mercury porosimetry, encompassed between 0.1 ml / g and 0.6 ml / g,a total pore volume, measured by nitrogen porosimetry, encompassed between 0.1 ml / g and 0.6 ml / g,a BET specific surface area encompassed between 100 and 550 m2 / g,a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 140 Å, of less than 0.1 ml / g,a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 160 Å, of less than 0.1 ml / g,a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 200 Å, of less than 0.1 ml / g,a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 500 Å, of less than 0.01 ml / g,an X diffraction diagram contains at least the main lines that are characteristic of at least one of the transition aluminas contained in the group that consists of the alpha, rho, chi, eta, gamma, kappa, theta and delta aluminas.
Owner:INST FR DU PETROLE

Process for oligomerizing olefins using a silica-alumina based catalyst

An olefin oligomerization process employs a particular silica-alumina catalyst which comprises a non zeolitic support based on silica-alumina containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2) and has the following characteristics: a mean pore diameter, measured by mercury porosimetry, in the range 20 to 140 Å; a total pore volume, measured by mercury porosimetry, in the range 0.1 ml / g to 0.6 ml / g; a total pore volume, measured by nitrogen porosimetry, in the range 0.1 ml / g to 0.6 ml / g; a BET specific surface area in the range 100 to 550 m2 / g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 140 Å, of less than 0.1 ml / g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 160 Å, of less than 0.1 ml / g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 200 Å, of less than 0.1 ml / g; a pore volume, measured by mercury porosimetry, included in pores with a diameter of more than 500 Å, of less than 0.1 ml / g; and an X ray diffraction diagram containing at least the principal characteristic peaks of at least one of the transition aluminas included in the group composed of alpha, rho, khi, eta, gamma, kappa, theta and delta aluminas.
Owner:INST FR DU PETROLE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products