Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

105 results about "Its region" patented technology

Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby

A composite filtration medium web of fibers containing a controlled dispersion of a mixture of sub-micron and greater than sub-micron diameter polymeric fibers is described. The filtration medium is made by a two dimensional array of cells, each of which produces a single high velocity two-phase solids-gas jet of discontinuous fibers entrained in air. The cells are arranged so that the individual jets are induced to collide in flight with neighboring jets in their region of fiber formation, to cause the individual nascent fibers of adjacent jets to deform and become entangled with and partially wrap around each other at high velocity and in a localized fine scale manner before they have had an opportunity to cool to a relatively rigid state. The cells are individually adjusted to control the mean diameters, lengths and trajectories of the fibers they produce. Certain cells are adjusted to generate a significant percentage of fibers having diameters less than one micron diameter, and which are relatively shorter in length and certain other cells are adjusted to generate a significant percentage of structure-forming reinforcing fibers having diameters greater than one micron diameter which are relatively longer in length. By employing appropriate close positioning and orientation of the cells in the array, the sub-micron fibers are caused to promptly entangle with and partially wrap around the larger reinforcing fibers. The larger fibers thereby trap and immobilize the sub-micron diameter fibers in the region of formation, to minimize the tendency of sub-micron diameter fibers to clump, agglomerate, or rope together in flight. Also, the larger fibers in flight are made to form a protective curtain to prevent the sub-micron fibers from being carried off by stray air currents.
Owner:THE PROCTER & GAMBLE COMPANY

Automatically Balancing Register for HVAC Systems

Distributed nodes, such as intelligent register controllers, of a heating, ventilating and / or air conditioning (HVAC) system wirelessly communicate with each other on a peer-to-peer basis, forming a network, and collectively control the HVAC system, without a central controller. The intelligent register controllers collectively control the amount of conditioned air introduced into each region. Each node may base its operation at least in part on information about one or more (ideally all) of the other nodes. Each intelligent register controller automatically determines how much conditioned air to allow into its region, or how much return air to allow to be withdrawn from its region, based on information collected by the register controller, such as: current temperature of the region; desired temperature of the region; calculated amount of conditioned air required to change the region's temperature to the desired temperature; temperature of conditioned air begin supplied by a duct to the register; current time, day of week, vacation or other schedule data; temperatures of other regions and their respective desired temperatures; calculated amounts of air required to be supplied or withdrawn by the other controlled registers to change their respective regions' temperatures to their desired temperatures; or combinations thereof. Each register controller automatically determines when and to what extent to operate its respective controllable damper.
Owner:ZONER

Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby

A composite filtration medium web of fibers containing a controlled dispersion of a mixture of sub-micron and greater than sub-micron diameter polymeric fibers is described. The filtration medium is made by a two dimensional array of cells, each of which produces a single high velocity two-phase solids-gas jet of discontinuous fibers entrained in air. The cells are arranged so that the individual jets are induced to collide in flight with neighboring jets in their region of fiber formation, to cause the individual nascent fibers of adjacent jets to deform and become entangled with and partially wrap around each other at high velocity and in a localized fine scale manner before they have had an opportunity to cool to a relatively rigid state. The cells are individually adjusted to control the mean diameters, lengths and trajectories of the fibers they produce. Certain cells are adjusted to generate a significant percentage of fibers having diameters less than one micron diameter, and which are relatively shorter in length and certain other cells are adjusted to generate a significant percentage of structure-forming reinforcing fibers having diameters greater than one micron diameter which are relatively longer in length. By employing appropriate close positioning and orientation of the cells in the array, the sub-micron fibers are caused to promptly entangle with and partially wrap around the larger reinforcing fibers. The larger fibers thereby trap and immobilize the sub-micron diameter fibers in the region of formation, to minimize the tendency of sub-micron diameter fibers to clump, agglomerate, or rope together in flight. Also, the larger fibers in flight are made to form a protective curtain to prevent the sub-micron fibers from being carried off by stray air currents.
Owner:THE PROCTER & GAMBLE COMPANY

Automatically balancing register for HVAC systems

Distributed nodes, such as intelligent register controllers, of a heating, ventilating and / or air conditioning (HVAC) system wirelessly communicate with each other on a peer-to-peer basis, forming a network, and collectively control the HVAC system, without a central controller. The intelligent register controllers collectively control the amount of conditioned air introduced into each region. Each node may base its operation at least in part on information about one or more (ideally all) of the other nodes. Each intelligent register controller automatically determines how much conditioned air to allow into its region, or how much return air to allow to be withdrawn from its region, based on information collected by the register controller, such as: current temperature of the region; desired temperature of the region; calculated amount of conditioned air required to change the region's temperature to the desired temperature; temperature of conditioned air begin supplied by a duct to the register; current time, day of week, vacation or other schedule data; temperatures of other regions and their respective desired temperatures; calculated amounts of air required to be supplied or withdrawn by the other controlled registers to change their respective regions' temperatures to their desired temperatures; or combinations thereof. Each register controller automatically determines when and to what extent to operate its respective controllable damper.
Owner:ZONER

Special probe and gene chip used for identifying pathogenic aspergillus

The invention discloses a special probe and gene chip used for identifying pathogenic aspergillus. The special probe for identifying pathogenic aspergillus provided by the invention comprises at least one of the following 20 DNA fragments: 10 DNA fragments of which nucleotide sequences are from sequence 1 to sequence 10 in the sequence table and 10 DNA fragments of which nucleotide sequences are complementary sequences of the sequence 1 to sequence 10 in the sequence table. The invention also provides a DNA chip containing the special probe for identifying pathogenic aspergillus. The special probe, DNA chip or device is all used for identifying pathogenic aspergillus. When in use, the special probe is coated on a low-density gene chip membrane, then the flow-through hybridization between the ITS region of rDNA of the pathogenic aspergillus to be tested and the species specificity probe on the low-density gene chip membrane is carried out by using the test platform based on the flow-through hybridization technology, and then color development is carried to finally identify the pathogenic aspergillus. The special probe and gene chip of the invention are characterized by strong specificity and fast operation and can play fast, specific and positive role in testing the common pathogenic aspergillus in clinical specimens and identifying the strain of the pathogenic aspergillus.
Owner:PEKING UNIV FIRST HOSPITAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products