Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2525results about "Electromagnetic relay details" patented technology

Non-volatile MEMS micro-relays using magnetic actuators

An actuation device employing square-loop latchable magnetic material having a magnetization direction (polarization) capable of being changed in response to exposure to an external magnetic field is disclosed. The magnetic field is created by a conductor assembly with non-solenoid configuration. Once the magnetization direction of the material is so changed, the external magnetic field is no longer required to maintain the new magnetization direction. The latchable magnetic material is disposed on the mobile electrode of a switching device, and another magnetic material is disposed in spaced relation to the latchable magnetic material on a stationary electrode or surface. By applying an electrical current to a conductor assembly arranged proximate the latchable material, a magnetic field is created about the latchable magnetic material, to change the magnetization direction and thereby enable the attraction or repulsion of another magnetic material located on the stationary electrode. The resulting relative displacement of the mobile and stationary electrodes effects the selective connection or disconnection of electrical contacts carried on or associated with the respective electrodes of the actuation device without requiring additional power in order to maintain the switched state of the electrodes.
Owner:WSOU INVESTMENTS LLC +1

Micromechanical resonator device and micromechanical device utilizing same

A micromechanical resonator device and a micromechanical device utilizing same are disclosed based upon a radially or laterally vibrating disk structure and capable of vibrating at frequencies well past the GHz range. The center of the disk is a nodal point, so when the disk resonator is supported at its center, anchor dissipation to the substrate is minimized, allowing this design to retain high-Q at high frequency. In addition, this design retains high stiffness at high frequencies and so maximizes dynamic range. Furthermore, the sidewall surface area of this disk resonator is often larger than that attainable in previous flexural-mode resonator designs, allowing this disk design to achieve a smaller series motional resistance than its counterparts when using capacitive (or electrostatic) transduction at a given frequency. Capacitive detection is not required in this design, and piezoelectric, magnetostrictive, etc. detection are also possible. The frequency and dynamic range attainable by this resonator makes it applicable to high-Q RF filtering and oscillator applications in a wide variety of communication systems. Its size also makes it particularly suited for portable, wireless applications, where, if used in large numbers, such a resonator can greatly lower the power consumption, increase robustness, and extend the range of application of high performance wireless transceivers.
Owner:RGT UNIV OF MICHIGAN

Single pole relay switch

A single-pole relay switch capable of effective arc extinction irrespective of the current flowing directions in which the device is connected in a circuit. The switch has a housing and two sets of contacts located in the housing, each set being composed of a fixed contact and a movable contact. A contact carrier is provided to have first and second movable arms which extend commonly from a bridge and are provided respectively with the two movable contacts. An actuator applies a driving force to move the contact carrier between an ON-position of holding the movable contacts simultaneously in contact respectively with the fixed contacts, and an OFF-position of keeping the movable contacts at respective opening gaps from the fixed contacts. The housing includes a casing which is divided into first and second chambers respectively for receiving the contact sets, each of the first and second chambers being surrounded by a dielectric wall. Permanent magnet are disposed around the casing to stretch the individual arcs in opposing directions to each other and towards the dielectric walls of the first and second chambers, respectively. Thus, the individual arcs can be stretched individually within the separate chambers, i.e., in an isolated condition. Therefore, the individual arcs can be free from merging even when the current flows in such a direction as to drive the arcs in the approaching direction.
Owner:MATSUSHITA ELECTRIC WORKS LTD

High voltage DC vacuum relay with high reliability and long service life

The invention discloses a high voltage DC vacuum relay with high reliability and long service life, which is arranged inside a vacuum cavity body that is sealed and connected by meal and ceramic; a ceramic insulator is connected between a movable contact component and a push rod in a sliding way; the good vacuum performance and electric insulation performance of the ceramic insulator can be utilized to lead the movable contact and a fixed contact to main good electric insulation together with a magnetic circuit system formed by a magnetic guide yoke iron plate of the relay, an iron core and the like no matter in a state of connection or disconnection, so that current interruption capability of the relay can be guaranteed when DC high-voltage load is switched; a vacuum chamber body and allparts in side the vacuum chamber body formed by the high voltage DC vacuum relay have low enough saturated vapor pressure and are treated by high temperature baking exhaust, so that the vacuum degreein the vacuum chamber body can ensure the work demand of the relay on switching heavy current and the DC high-voltage load for a long time; furthermore, the relay also has the advantages of simple andcompact structure, small volume, light weight, strong shock resistance and impact resistance, simple technique process, low production cost and large batch production.
Owner:XIAMEN HONGFA ELECTRIC POWER CONTROLS

Capacitive micro-acceleration sensor with symmetrically combined elastic beam structure and production method thereof

The invention relates to a capacitive micro-acceleration sensor with a symmetrically combined elastic beam structure and a production method thereof. The acceleration sensor comprises a symmetric center mass block, an external support frame, eight symmetric straight beams, two symmetric frame beams, a combined elastic beam structure, an upper cover plate and a lower cover plate, wherein the eight symmetric straight beams are used for connecting the center mass block with the external support frame, and the combined elastic beam structure is formed by connecting eight symmetric L-shaped beams together; and the other end of each straight elastic beam connected with the frame beams is connected to the middle or a vertex angle at the top end and the bottom end of the lateral face of the center mass block, and the other end of each L-shaped beam connected with the frame beams is connected to the inner side face of the external support frame. The acceleration sensor adopts the combined elastic beam structure which is formed by connecting the symmetric straight beams, the frame beams and the L-shaped beams together, has high symmetry and can remarkably reduce the cross-sensitivity of the sensor; and the sensor is produced by adopting a microelectronic mechanical system technology and is the capacitive micro-acceleration sensor with high sensitivity.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products