Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

247results about "Mechanically variable capacitor details" patented technology

Capacitor with multiple elements for multiple replacement applications

A capacitor provides a plurality of selectable capacitance values, by selective connection of six capacitor sections of a capacitive element each having a capacitance value. The capacitor sections are provided in a plurality of wound cylindrical capacitive elements. Two vertically stacked wound cylindrical capacitance elements may each provide three capacitor sections. There may be six separately wound cylindrical capacitive elements each providing a capacitor section. The capacitor sections have a common element terminal. A pressure interrupter cover assembly is sealingly secured to the open end of case for the elements and has a deformable cover with a centrally mounted common cover terminal and a plurality of section cover terminals mounted at spaced apart locations. A conductor frangibly connects the common element terminal of the capacitor section to the common cover terminal and conductors respectively frangibly connect the capacitor section terminals to the section cover terminals. Deformation of the cover caused by failure of the capacitor element breaks at least some of the frangible connections sufficient to disconnect the capacitive element from an electric circuit in which it is connected. A cover insulation barrier mounted on the deformable cover, has a barrier cup substantially surrounding the common cover terminal and a plurality of barrier fins each extending radially outwardly from the barrier cup, and deployed between adjacent section cover terminals.
Owner:AMRAD MFG LLC

MEMS-based variable capacitor

A variable capacitor device using MEMS or micromachining techniques wherein thin-films of materials are deposited, patterned and etched to form movable micromechanical elements on the surface of a substrate composed of either semiconductor, glass, metal, or ceramic material. In one embodiment of the present invention to achieve higher frequency performance as well as other benefits, the substrate is comprised of Low-Temperature Co-Fired Ceramics (LTCC). The variable capacitor is an electrostatically actuated micromechanical device and if fabricated on a LTCC multi-layered substrate material has continuous electrical connections through the layers. The same LTCC substrate material can also be used to enclose the device by selectively removing a portion of the upper substrate so as to form a cavity. The two substrates are then bonded together to enclose and protect the variable capacitor. An integrated circuit can be incorporation onto the multi-level substrate structure to enable a electronic closed-loop controlled variable capacitor module. The integrated circuit is flip-chip bonded at the bottom of the substrate structure with appropriate electrical connections between the integrated circuit and the MEMS variable capacitor device. A variation of the present invention utilizes a zipper actuation method wherein the tuning ratio of the variable capacitor is increased to very high levels. Yet another variation of the present invention utilizes a differential gap between the top and bottom electrodes such that the actuation electrodes do not physically contact one another. Yet another implementation of the present invention uses an extra set of electrodes or mechanical mechanism so as to lock the value of the capacitor indefinitely. Yet another implementation uses shaped actuation electrodes so as to linearize the relationship between the applied actuation voltage and the resultant capacitance of the device.
Owner:FOR NAT RES INITIATIVES

Capacitor with multiple elements for multiple replacement applications

A capacitor provides a plurality of selectable capacitance values, by selective connection of six capacitor sections of a capacitive element each having a capacitance value. The capacitor sections are provided in a plurality of wound cylindrical capacitive elements. Two vertically stacked wound cylindrical capacitance elements may each provide three capacitor sections. There may be six separately wound cylindrical capacitive elements each providing a capacitor section. The capacitor sections have a common element terminal. A pressure interrupter cover assembly is sealingly secured to the open end of case for the elements and has a deformable cover with a centrally mounted common cover terminal and a plurality of section cover terminals mounted at spaced apart locations. A conductor frangibly connects the common element terminal of the capacitor section to the common cover terminal and conductors respectively frangibly connect the capacitor section terminals to the section cover terminals. Deformation of the cover caused by failure of the capacitor element breaks at least some of the frangible connections sufficient to disconnect the capacitive element from an electric circuit in which it is connected. A cover insulation barrier mounted on the deformable cover, has a barrier cup substantially surrounding the common cover terminal and a plurality of barrier fins each extending radially outwardly from the barrier cup, and deployed between adjacent section cover terminals.
Owner:AMRAD MFG LLC

Nanoelectromechanical bistable cantilever device

Nano-electromechanical device having an electrically conductive nano-cantilever wherein the nano-cantilever has a free end that is movable relative to an electrically conductive substrate such as an electrode of a circuit. The circuit includes a power source connected to the electrode and to the nano-cantilever for providing a pull-in or pull-out voltage therebetween to effect bending movement of the nano-cantilever relative to the electrode. Feedback control is provided for varying the voltage between the electrode and the nano-cantilever in response to the position of the cantilever relative to the electrode. The device provides two stable positions of the nano-cantilever and a hysteresis loop in the current-voltage space between the pull-in voltage and the pull-out voltage. A first stable position of the nano-cantilever is provided at sub-nanometer gap between the free end of the nano-cantilever and the electrode with a pull-in voltage applied and with a stable tunneling electrical current present in the circuit. A second stable position of the nano-cantilever is provided with a pull-out voltage between the cantilever and the electrode with little or no tunneling electrical current present in the circuit. The nano-electromechanical device can be used in a scanning probe microscope, ultrasonic wave detection sensor, NEMS switch, random access memory element, gap sensor, logic device, and a bio-sensor when the nano-cantilever is functionalized with biomolecules that interact with species present in the ambient environment be them in air or aqueous solutions. In the latest case, the NEMS needs to be integrated with a microfluidic system.
Owner:NORTHWESTERN UNIV

Micro electro-mechanical variable capacitor

A three-dimensional micro electro-mechanical (MEMS) variable capacitor is described wherein movable comb electrodes of opposing polarity are fabricated simultaneously on the same substrate are independently actuated. These electrodes are formed in an interdigitated fashion to maximize the capacitance of the device. The electrodes are jointly or individually actuated. A separate actuation electrode and a ground plane electrode actuate the movable electrodes. The voltage potential between the two electrodes provides a primary mode of operation of the device. The variation of the sidewall overlap area between the interdigitated fingers provides the expected capacitance tuning of the device. The interdigitated electrodes can also be attached on both ends to form fixed-fixed beams. The stiffness of the electrodes is reduced by utilizing thin support structures at the ends of the electrodes. The three dimensional aspect of the device avails large surface area. Large capacitance variation and tuning ranges are obtained by independent actuation of the electrode fingers. A plurality of modes of operation of the device provides wide flexibility and greater performance advantage for the device. Upon fabrication of the device, a separate substrate with etched dielectric is used to encapsulated the device. The MEMS device is then completely encapsulated, requiring no additional packaging of the device. Further, since alignment and bonding can be done on a wafer scale, an improved device yield is obtained at a lower cost.
Owner:GLOBALFOUNDRIES INC

Capacitor with multiple elements for multiple replacement applications

A capacitor provides a plurality of selectable capacitance values, by selective connection of six capacitor sections of a capacitive element each having a capacitance value. The capacitor sections are provided in a plurality of wound cylindrical capacitive elements. Two vertically stacked wound cylindrical capacitance elements may each provide three capacitor sections. There may be six separately wound cylindrical capacitive elements each providing a capacitor section. The capacitor sections have a common element terminal. A pressure interrupter cover assembly is sealingly secured to the open end of case for the elements and has a deformable cover with a centrally mounted common cover terminal and a plurality of section cover terminals mounted at spaced apart locations. A conductor frangibly connects the common element terminal of the capacitor section to the common cover terminal and conductors respectively frangibly connect the capacitor section terminals to the section cover terminals. Deformation of the cover caused by failure of the capacitor element breaks at least some of the frangible connections sufficient to disconnect the capacitive element from an electric circuit in which it is connected. A cover insulation barrier mounted on the deformable cover, has a barrier cup substantially surrounding the common cover terminal and a plurality of barrier fins each extending radially outwardly from the barrier cup, and deployed between adjacent section cover terminals.
Owner:AMRAD MFG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products