Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

197results about "Capacitance correction" patented technology

Fluid-filled capacitor with pressure interrupter means and internal compressible air chamber

A capacitor has a polymer housing and a wound metallized film capacitive element received in the housing, with leads connected to terminals on the cover of the housing through a pressure responsive interrupter assembly. An air chamber is provided in the housing, confining a compressible volume of air, and insulating fluid fills the remaining volume of the housing, substantially immersing the capacitive element. The air chamber is advantageously defined by a piston slidably mounted in the housing. Upon a high pressure condition caused by failure of the capacitive element, the volume of air is compressed to cushion the onset of the high pressure, protecting the case from rupture prior to operation of the pressure responsive interrupter assembly.
Owner:AMERICAN RADIONIC CO INC

MEMS tunable capacitor based on angular vertical comb drives

InactiveUS20050013087A1Increase tuning rangeAppreciates the drawbacks inherent in lateral drive MEMS capacitorsMultiple-port networksMechanically variable capacitor detailsCapacitanceComb finger
A MEMS tunable capacitor with angular vertical comb-drive (AVC) actuators is described where high capacitances and a wide continuous tuning range is achieved in a compact space. The comb fingers rotate through a small vertical angle which allows a wider tuning range than in conventional lateral comb drive devices. Fabrication of the device is straightforward, and involves a single deep reactive ion etching step followed by release and out-of-plane assembly of the angular combs.
Owner:RGT UNIV OF CALIFORNIA

Electroactive polymer transducers

Dielectric elastomer or electroactive polymer film transducers configured to minimize high electrical field gradients that can lead to partial discharge and corona.
Owner:BAYER MATERIALSCIENCE AG

Layer and method for microbattery protection by a ceramic-metal double layer

A protective layer ( 7 ) formed of a metal or metal alloy capable of absorbing considerable thermomechanical deformations without causing fissures to appear is described for energy storage systems. In particular, the metal or the metal alloy has an expansion coefficient less than 6.10 -6 ° C.-1. The protective layer may be associated with a second layer ( 6 ) in insulating ceramic. A deposition method is described. Said protection is principally advantageous for microbatteries ( 10 ), the constituents of which are reactive to air.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Mos capacitor structure and linearization method for reduced variation of the capacitance

A highly linearized capacitor structure is formed by a first capacitor, that is coupled between a first terminal and a common node, combine with a second capacitor, that is coupled between a second terminal and the common node. When a bias voltage is applied, the capacitance values of the first and second capacitors combine and a capacitance variation of the first capacitor is compensated by a capacitance variation of the second capacitor to reduce and linearize overall capacitance variation in the combined capacitor structure.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Organic encapsulant compositions for protection of electronic components

An organic encapsulant composition applied to formed-on-foil ceramic capacitors and embedded inside printed wiring boards allows the capacitor to resist printed wiring board chemicals and pass 1000 hours of accelerated life testing conducted under high humidity, elevated temperature and applied DC bias.
Owner:EI DU PONT DE NEMOURS & CO

Layer-built capacitor, and its manufacturing method

A multilayer capacitor includes first and second internal electrodes that are opposed to each other so as to generate an electrostatic capacitance and have a capacitance generating portion functioning to generate the electrostatic capacitance, terminal connecting portions connected to corresponding external terminal electrodes, and extended portions connecting the capacitance generating portion to the terminal connecting portions. The extended portions are narrower than the capacitance generating portion and the terminal connecting portion and are curved in the direction of their thickness so as to provide a longer effective length. The multi-terminal capacitor is capable of increasing an ESR without adding a separate additional element.
Owner:MURATA MFG CO LTD

High-Power Ultracapacitor Energy Storage Pack and Method of Use

An ultracapacitor energy storage cell pack including an ultracapacitor assembly including a plurality of ultracapacitors in series; a plurality of interconnections for mechanically and electrically interconnecting the ultracapacitors; and a plurality of balancing resistors, each balancing resistor in parallel with each ultracapacitor to form a resistor divider network that automatically discharges and equalizes each ultracapacitor over time, thereby balancing the ultracapacitors of the ultracapacitor assembly, and each balancing resistor directly mechanically and electrically connected to an associated interconnection.
Owner:ISE

Electronic component, method of manufacturing the same, and mount structure of electronic component

An electronic component includes a main body, first and second external electrodes, and a water-repellent film. The first and second external electrodes are provided on a portion of a surface of the main body. The water-repellent film is provided on another portion of the surface of the main body and on a surface of the first external electrode. The water-repellent film contains a non-cross-linked silicone resin. An angle of contact of water of about 25° C. with the water-repellent film is not less than about 100° and not greater than about 160°.
Owner:MURATA MFG CO LTD

Semiconductor variable capacitor

A novel semiconductor variable capacitor is presented. The semiconductor structure is simple and is based on a semiconductor variable MOS capacitor structure suitable for integrated circuits, which has at least three terminals, one of which is used to modulate the equivalent capacitor area of the MOS structure by increasing or decreasing its DC voltage with respect to another terminal of the device, in order to change the capacitance over a wide ranges of values. Furthermore, the present invention decouples the AC signal and the DC control voltage avoiding distortion and increasing the performance of the device, such as its control characteristic. The present invention is simple and only slightly dependent on the variations due to the fabrication process. It exhibits a high value of capacitance density and, if opportunely implemented, shows a linear dependence of the capacitance value with respect to the voltage of its control terminal.
Owner:QUALCOMM INC

Multilayer ceramic capacitor

InactiveUS20110141652A1Effectively crackEffectively breakdownThin/thick film capacitorFixed capacitor electrodesMetallurgyCeramic capacitor
A multilayer ceramic capacitor includes: an effective layer formed by alternately laminating inner electrodes and dielectric layers; and a protection layer formed by stacking dielectric layers on upper and lower surfaces of the effective layer, wherein the thickness of the protection layer is 10.0 to 30.0 times the sum of an average thickness of the inner electrodes and an average thickness of the dielectric layers within the effective layer.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Multi-layer capacitive transducer

A capacitive transducer of multi-layer construction includes two rotor plates supported by flexible springs, the plates being spaced apart and rigidly connected by a stem. One rotor plate my be used as either a pickup electrode or a grounded target electrode for determining position, displacement, or load force. The second rotor plate may be used for electrostatic actuation without interfering with or destroying circuitry associated with the first rotor plate. A number of improvements are disclosed including a hollow rotor plate structure for reduced moving mass, buckling resistant features for the springs, improved spring anchor joint design for reduced creep and hysteresis, and material selection and matching for reduced thermal sensitivity.
Owner:BONIN WAYNE

Capacitance device and resonance circuit

To suppress changes in capacitance due to displacement between electrodes opposing each other across a dielectric layer, thereby allowing stable manufacturing of a capacitance device having a desired capacitance.The capacitance device according to the present invention is of a configuration including a dielectric layer (10), a first electrode (11) formed on a predetermined surface (10a) of the dielectric layer (10), and a second electrode (12) formed on a surface (10b) on the opposite side of the dielectric layer (10) from the predetermined surface (10a). The forms of the first and second electrodes (11, 12) are set so that even in the event that the first electrode (11) is relatively displaced regarding position in a predetermined direction as to the second electrode (12), the area of the opposing-electrode region between the first electrode (11) and to the second electrode (12) is unchanged.
Owner:DEXERIALS CORP

Passive component

The passive component (1) has a first part (22) of a material with a first resistance value, which value can be lowered to a second value by laser trimming. The second value is at most one tenth of the first value and preferably less. The material crystallizes in a laser trimming process, which locally heats the material to at least a transition temperature. The material contains at least two different elements, which are preferably aluminum and germanium.The passive component (1) may be, for example, a resistor or a capacitor and may be part of a thin-film network of resistors, capacitors and / or inductors. In a resistor, it is preferred to have a second part (4) which contains a different resistance material with a resistance value lower than the first value and preferably higher than the second value.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Multi-layer ceramic capacitor

A multi-layer ceramic capacitor includes a plurality of dielectric ceramic layers; internal electrodes formed between the dielectric ceramic layers; and end termination electrodes electrically connected to the internal electrodes, wherein the dielectric ceramic layer is a sintered body constituted of a primary component that, when it is expressed by ABO3+aRe2O3+bMnO, satisfies 1.000≦A / B≦1.035, 0.05≦a≦0.75 and 0.25≦b≦2.0; and a subcomponent that includes at least one kind of B, Li or S in the range of 0.16 to 1.6 parts by mass in total in terms of B2O3, Li2O and SiO2; and the internal electrode is constituted of Cu or a Cu alloy.
Owner:TAIYO YUDEN KK

Manufacture of 3 dimensional MIM capacitors in the last metal level of an integrated circuit

A method is for fabricating an integrated circuit formed from a substrate and including several metallic interconnection levels in which, in a same plane parallel to the main plane of the substrate, is a plurality of thick horizontal metallic interconnection lines, as well as one or several MIM capacitors fitted with metallic electrodes that are orthogonal to the main plane of the substrate.
Owner:STMICROELECTRONICS SRL

Electrolytic solution for electric double layer capacitor and electric double layer capacitor

An electrolytic solution for electric double layer capacitor characterized in that a Spiro compound of formula (1) is contained as an electrolyte in an aprotic solvent and that the electric conductivity thereof at −40° C. is 0.85 mS / cm or higher. This electrolytic solution for electric double layer capacitor realizes a high dissolution of electrolyte in solvent and exhibits excellent conductivity and electrostatic capacity over a wide temperature range from low temperature to high temperature. Further, the electrolytic solution for electric double layer capacitor exhibits high resistance to voltage and even under long-term high voltage load, exhibits suppressed lowering of electrostatic capacity to thereby excel in long-term stability.
Owner:THE JAPAN CARLIT CO LTD

Capacitive switch of electric/electronic device

A capacitive switch of an electric / electronic device is provided. The capacitive switch includes a plurality of contacts which are disposed at a front of a control panel; a plurality of capacitive sensors which are disposed at a rear of the control panel, respectively face the contacts, and detect capacitance variations caused by static electricity that affects the contacts; and a plurality of void removal elements which are respectively disposed between the capacitive sensors and the contacts, remove a plurality of voids between the capacitive sensors and the contacts, and are formed of an elastic material so as to be able to compensate for various sized voids. Therefore, it is possible to easily remove various sized voids between the contacts and the capacitive sensors using the void removal elements, to prevent malfunction of the capacitive sensors due to the existence of voids, and to provide various shapes of control panels and various shapes of printed circuit boards.
Owner:LG ELECTRONICS INC

Variable capacitor

ActiveUS20080180876A1Fluctuation of driving voltage characteristic can be preventedAvoid volatilityMechanically variable capacitor detailsCapacitor with electrode area variationCapacitanceEngineering
A variable capacitor is provided which is appropriate for suppressing fluctuation in driving voltage characteristic and for achieving a larger variation ratio of static capacitance. The variable capacitor includes a fixed electrode and a movable electrodetrode. The fixed electrode includes a first opposing face, while the movable electrode includes a second opposing face that faces the first opposing face. The movable electrode further includes a curved portion that protrudes toward the fixed electrode. The variable capacitor also includes a dielectric pattern provided on the first opposing face.
Owner:FUJITSU LTD

Variable capacitors, composite materials

Tunable capacitors (10, 20, 30, 40) have a dielectric material (16, 26, 36, 42) between electrodes, which dielectric material comprises an insulating material (17, 27, 37, 42) and electrically conductive material, (18, 28, 38, 48) e.g., conductive nanoparticulates, dispersed therein. In certain cases, enhanced tune-ability is achieved when the dielectric material comprises elongated nanoparticulates (38). Further enhanced tune-ability may be achieved by aligning elongated particulates in an electrode-to-electrode direction. Nanoparticulates may be produced by heating passivated nanoparticulates. Passivated nanoparticulates may be covalently bound within a polymeric matrix. High bias potential device structures can be formed with preferential mobilities.
Owner:NGIMAT CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products