Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

768 results about "Hydrophile" patented technology

A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water. In contrast, hydrophobes are not attracted to water and may seem to be repelled by it.

Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties

InactiveUS6201072B1Difficult to formulateDifficult to administerOrganic active ingredientsPowder deliverySolubilityPolymer science
A water soluble, biodegradable ABA- or BAB-type tri-block polymer is disclosed that is made up of a major amount of a hydrophobic A polymer block made of a biodegradable polyester and a minor amount of a hydrophilic polyethylene glycol(PEG) B polymer block, having an overall average molecular weight of between about 2000 and 4990, and that possesses reverse thermal gelation properties. Effective concentrations of the tri-block polymer and a drug may be uniformly contained in an aqueous phase to form a drug delivery composition. At temperatures below the gelation temperature of the tri-block polymer the composition is a liquid and at temperatures at or above the gelation temperature the composition is a gel or semi-solid. The composition may be administered to a warm-blooded animal as a liquid by parenteral, ocular, topical, inhalation, transdermal, vaginal, transurethral, rectal, nasal, oral, pulmonary or aural delivery means and is a gel at body temperature. The composition may also be administered as a gel. The drug is released at a controlled rate from the gel which biodegrades into non-toxic products. The release rate of the drug may be adjusted by changing various parameters such as hydrophobic/hydrophilic component content, polymer concentration, molecular weight and polydispersity of the tri-block polymer. Because the tri-block polymer is amphiphilic, it functions to increase the solubility and/or stability of drugs in the composition.
Owner:KIM PH D SUNG WAN +2

Therapeutic delivery compositions and methods of use thereof

InactiveUS20020128218A1Reduce deliveryFacilitate transmission and introductionBiocidePeptide/protein ingredientsHydrophileNucleic acid sequencing
The present invention relates to compositions and methods for treating infectious diseases and genetic disorders through gene therapy and intracellular delivery of antisense oligonucleotides or other nucleic acid sequences. The present invention comprises a therapeutic delivery composition effective for treating a disease state comprising an administerable admixture of an effective amount of a therapeutic compound capable of altering nucleic acid sequence function and an effective amount of a block copolymer having the following general formula: 1 wherein: the mean aggregate molecular weight of the portion of the octablock copolymer represented by polyoxypropylene is between about 5000 and about 7000 Daltons; a is a number such that the portion represented by polyoxyethylene constitutes between about 10% to about 40% of the compound by weight; and b is a number such that the polyoxypropylene portion of the total molecular weight of the octablock copolymer constitutes between about 60% and about 90% of the compound by weight. The present invention also includes compositions and methods using biologically active nonionic reverse block copolymers. The reverse copolymers have an inner core of polyoxypropylene (POP) that is flanked on either end by polyoxyethylene (POE). The reverse block copolymers have the following formula: 2 wherein "b" represents a number such that the molecular weight of the hydrophobe (C.sub.3H.sub.6O).sub.b is between approximately 2,000 and 10,000, and "a" represents a number such that the percentage of hydrophile (C.sub.2H.sub.4O).sub.a is between approximately 5% and 30%.
Owner:EMANUELE R MARTIN +3

Transparent super-amphiphobic surface layer and layer-by-layer in-situ spraying reaction preparation method

The invention relates to a transparent super-amphiphobic surface layer and a layer-by-layer in-situ spraying reaction preparation method. The method comprises the steps of sequentially spraying priming paint solutions and finishing paint solutions on a base body in a layer-by-layer in-situ mode through a spraying gun and by adopting the same spraying technology, sequentially spraying acetic acid water solutions of 1 wt.% and fluorine-silicane solutions of 0.1-2 wt.%, carrying out curing at normal temperature and then obtaining a transparent super-amphiphobic surface. The priming paint solutions are obtained by adding hydrophobic transparent resin and corresponding curing agents into soluble solvents and then dispersing the mixtures ultrasonically until the resin is completely dissolved; the finishing paint solutions are obtained by adding hydrophilic fumed silica into ethyl alcohol and forming solutions ultrasonically. According to the invention, the preparation technology for needed coatings is simple, the spraying technology is easy and convenient to operate, coatings are super-hydrophobic, super-oleophobic and highly transparent, and the application prospect is wide in the fields of solar panels, glasses and automobile windshield glass.
Owner:SOUTHEAST UNIV

Amphiphilic ternary polymer brush and nano capsule

ActiveCN102911370AEasy to adjust and control the sizeThe particle size is easy to adjust and controllableMicroballoon preparationMicrocapsule preparationPolymer scienceSide chain
The invention discloses an amphiphilic ternary polymer brush and a nano capsule. The amphiphilic ternary polymer brush has the following general formula, wherein A is polymer main chain, B is lipophilic polymer side chain, C is photo-crosslinked polymer side chain, D is hydrophilic polymer side chain, and the side chains B, C and D are randomly grafted onto the main chain A; and the nano capsule is prepared through dispersing the amphiphilic ternary polymer brush into an oil-water two-phase system, and then performing light crosslinking reaction or reaction initiated by light. The amphiphilic ternary polymer brush solves the difficulty that the particle size of the capsule can not be adjusted and controlled effectively by using the conventional segmented copolymers, and the size of the prepared photo-crosslinked nano capsule is easily adjusted and controlled; the nano capsule prepared by the emulsion self-assembly method is simple in operation and easy to use in large-scale preparation; the prepared hollow nano capsule is large in casting quantity; the photo-crosslinked nano capsule provided by the invention is stable, and according to the light crosslinking method, nontoxicity and safety are reliazed, and the environmental protection is realized. The amphiphilic ternary polymer brush has the following general formula: A-g-(B-r-C-r-D).
Owner:GUANGZHOU CHEM CO LTD CHINESE ACADEMY OF SCI

Method for preparing anti-pollution chitosan-nonwoven cloth composite porous filter membrane

The invention discloses a method for preparing an antipollution chitosan-nonwoven fabric composite porous filter membrane and belongs to the technical field of microfilter and ultrafilter composite membranes. The method is characterized in that the method adopts nonwoven fabric with nominal aperture of between 0.1 and 10 microns as a base membrane; a crosslinking agent is adopted to carry out pretreatment on the base membrane; 0.1 to 10 mass percent amylose is dissolved in an acetic acid solution; the crosslinking agent and a hole formation agent are added into the acetic acid solution; after the crosslinking reaction, a casting film liquid is obtained; at negative pressure, the casting film liquid is evenly coated on the surface and pores of the porous base membrane; and after treatment by a sodium hydroxide solution and a hot water bath, the antipollution chitosan-nonwoven fabric composite porous filter membrane is formed. The method has the advantages that the prepared composite membrane has good mechanical performance and chemical stability; and the surface of the membrane is levelled and smooth. The composite membrane has dual functions of hydrophile and antibiosis, can lighten adsorption of pollutants on the surface of the membrane, inhibit the growth and reproduction of thalli on the surface of the membrane, and keep the penetrating performance of the membrane and is widely applied to the water treatment process of various fields.
Owner:DALIAN UNIV OF TECH

Cardanol polyoxyethylene ether and preparation method thereof

The invention provides cardanol polyoxyethylene ether and a preparation method thereof. The cardanol polyoxyethylene ether is prepared by reacting cardanol and epoxy ethane. The method comprises the following steps of: adding a catalyst and the cardanol into a reaction kettle during a reaction; fully stirring at the temperature of between 150 and 180 DEG C; introducing the epoxy ethane into the reaction kettle; performing polyreaction with stirring; adding acetic acid after the reaction for neutralization; and discharging after cooling so as to obtain the cardanol polyoxyethylene ether. The cardanol polyoxyethylene ether and the preparation method thereof have the advantages of a small number of side reactions, good color and luster of a product, mild reaction condition and low cost of raw materials. Natural cardanol is taken as a raw material for producing, so that the adverse effect of alkylpheol ethoxylates synthesized from petroleum on the environment is avoided. The cardanol polyoxyethylene ether belongs to linear chain alkylpheol ethoxylates and the hydrophile-lipophile balance (HLB) of a nonionic surfactant can be controlled by adjusting the adduct number of the epoxy ethane according to a process, so that the cardanol polyoxyethylene ether can be taken as an emulsifier, a lubricant, a washing agent, a solubilizing agent and the like.
Owner:BINZHOU MEIDONG RESIN

Synthetic method and application of metal-organic framework composite nanomaterial

The invention provides a synthetic method and application of a metal-organic framework (MOF) composite nanomaterial. The method comprises the following steps: dispersing ferriferrous oxide magnetic spheres which are synthesized through a traditional hydrothermal technology in a weakly alkaline solution of dopamine hydrochloride to carry out self-polymerization of dopamine on the surfaces of the magnetic spheres; and sequentially dispersing polydopamine coated magnetic spheres in a dimethylformamide solution of zirconium chloride and a dimethylformamide solution of 2-amino-terephthalic acid to obtain the MOF composite nanomaterial with the magnetic sphere surfaces coated with polydopamine and modified with an amino group and with zirconium as a center metal ion. The material has the advantages of large specific surface area, good hydrophilicity and suitable pore structure, can be applied to further researches of the proteomics, and can specifically enrich Which can specifically enrich phosphorylated peptide segments and glycopeptides; the synthetic method is simple and quick; and the synthesized material has good hydrophilicity and biocompatibility, and can be used for selectively enriching endogenous phosphorylation peptide segments and glycopeptide in complex biological samples.
Owner:FUDAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products