Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

348 results about "Polymer brush" patented technology

A polymer brush is the name given to a surface coating consisting of polymers tethered to a surface. The brush may be either in a solvated state, where the tethered polymer layer consists of polymer and solvent, or in a melt state, where the tethered chains completely fill up the space available. These polymer layers can be tethered to flat substrates such as silicon wafers, or highly curved substrates such as nanoparticles. Also, polymers can be tethered in high density to another single polymer chain, although this arrangement is normally named a bottle brush. Additionally, there is a separate class of polyelectrolyte brushes, when the polymer chains themselves carry an electrostatic charge.

Polymers, supersoft elastomers and methods for preparing the same

Embodiments of the present invention include a material comprising a polymer having a modulus of elasticity less than 105 Pa and a material comprising a polymer having a modulus of elasticity of less than 5×104 Pa. Embodiments also include a material comprising a polymeric network and a multiplicity of side chains attached to the polymeric network. The multiplicity of side chains may have an average molecular weight below the critical molecular weight for entanglements. In certain embodiments it may be advantageous for the side branches to have a glass transition temperature below the use temperature of the material. The polymer network may comprise at least two monomers so that the polymer network is a copolymer. Embodiments of the present invention also include methods of forming a polymer network. Such as, for example, a method of preparing a polymer network comprising cross-linking a polymer, wherein the polymer comprises a multiplicity of side chains. The polymer may be at least one of a polymer brush, a polymer comb, and a nanocomposite material. An additional embodiment may include polymerizing macromonomers in the presence of a crosslinking agent. This embodiment may result in the forming a polymer network, wherein the polymer network comprises a multiplicity of branches attached to the polymer network, wherein the macromonomers may have a molecular weight less than the critical molecular weight for entanglements. Another embodiment of the method of forming a polymer network may comprising polymerizing monomers directly from a crosslinked polymer network. This method may result in forming a branched polymer network, wherein the polymer network comprises a multiplicity of branches attached to the polymer network.
Owner:CARNEGIE MELLON UNIV

Amphiphilic ternary polymer brush and nano capsule

ActiveCN102911370AEasy to adjust and control the sizeThe particle size is easy to adjust and controllableMicroballoon preparationMicrocapsule preparationPolymer scienceSide chain
The invention discloses an amphiphilic ternary polymer brush and a nano capsule. The amphiphilic ternary polymer brush has the following general formula, wherein A is polymer main chain, B is lipophilic polymer side chain, C is photo-crosslinked polymer side chain, D is hydrophilic polymer side chain, and the side chains B, C and D are randomly grafted onto the main chain A; and the nano capsule is prepared through dispersing the amphiphilic ternary polymer brush into an oil-water two-phase system, and then performing light crosslinking reaction or reaction initiated by light. The amphiphilic ternary polymer brush solves the difficulty that the particle size of the capsule can not be adjusted and controlled effectively by using the conventional segmented copolymers, and the size of the prepared photo-crosslinked nano capsule is easily adjusted and controlled; the nano capsule prepared by the emulsion self-assembly method is simple in operation and easy to use in large-scale preparation; the prepared hollow nano capsule is large in casting quantity; the photo-crosslinked nano capsule provided by the invention is stable, and according to the light crosslinking method, nontoxicity and safety are reliazed, and the environmental protection is realized. The amphiphilic ternary polymer brush has the following general formula: A-g-(B-r-C-r-D).
Owner:GUANGZHOU CHEM CO LTD CHINESE ACADEMY OF SCI

High selectivity hygroscopic agent with shell and core structure and preparation method thereof

The invention discloses a high selectivity moisture absorber with a shell-core structure and a method for preparing the same. The moisture absorber is an organic-inorganic composite adsorbent which takes an inorganic porous material the surface of which contains a hydroxyl group as an inner core and a hydrophilic polymer ultra-thin film as a shell, wherein by the condensation and polymerization reactions, the shell is grafted with a hydrophilic polymer brush on the surface of the inner core; and further by the cross linking, the hydrophilic polymer ultra-thin film shell is formed. The preparation method comprises the following steps: firstly, the inorganic porous material the surface of which contains the hydroxyl group is subjected to activating treatment and then subjected to hydrolytic condensation with a silane coupler to form an inorganic porous material containing vinyl; and the inorganic porous material containing the vinyl is subjected to free radical polymerization reaction with an acrylic monomer and then is subjected to cross linking reaction with a diamine compound so as to obtain the high selectivity moisture absorber with the shell-core structure. Compared with prior art, the moisture absorber has the advantages of high selectivity, large hygroscopic capacity, simple preparation process, low cost and easy control of selectivity, and can meet the requirements of different application occasions.
Owner:SOUTH CHINA UNIV OF TECH

Preparation method of quaternary ammonium salt polymer antibacterial agent and silver-loaded compound antibacterial agent thereof on basis of ATRP method

The invention discloses a preparation method of a quaternary ammonium salt polymer antibacterial agent and a silver-loaded compound antibacterial agent thereof on the basis of an ATRP method. According to the method, various monomers are grafted onto initiation points of an initiator through atom transfer radical active polymerization, a high molecular polymer is obtained, ring-opening reacting is conducted on the high molecular polymer, and an antibacterial agent polymer framework material can be obtained; different modifications are conducted on the antibacterial agent polymer framework material, and a quaternary ammonium salt polymer antibacterial agent, a silver-loaded-quaternary ammonium salt polymer compound antibacterial agent and a silver-loaded polymer antibacterial agent are obtained respectively. The obtained antibacterial agents are low in antibacterial concentration and obvious in sterilizing effect and can be used for modifications of the surfaces of glass sheets, polystyrene and the like by combining the adsorption property of dopamine to form a surface antibacterial polymer brush. The antibacterial effect of the antibacterial agents is obvious, and high commercial potential is achieved.
Owner:BEIJING UNIV OF CHEM TECH

Polyethylene artificial joint capable of improving biocompatibility and tribological property and preparation method thereof

The invention discloses a polyethylene artificial joint capable of improving biocompatibility and tribological property and a preparation method thereof. The polyethylene artificial joint comprises a joint head and a superhigh molecular weight polyethylene cotyle, wherein a bionic polymer brush layer is grafted on the surface of the superhigh molecular weight polyethylene cotyle rubbed with the joint head; and the bionic polymer brush layer is a brush-shaped structure formed by connecting a super-lubricant and hydrophilic polymer chain on the surface of polyethylene. The high-biocompatibility polymer brush layer is grafted on the surface of the artificial joint polyethylene by simulating a brush-shaped structure and a lubricating antifriction function of a natural joint cartilage epilimmion synovial cavity, so that the biocompatibility and the tribological property of the artificial joint are obviously improved, and tissue reaction and aseptic loosening are relieved; and the polymer brush molecular chain is chemically bonded on the surface of the superhigh molecular weight polyethylene firmly by an ultraviolet grafting technique. The artificial joint prepared by the method has high wettability and biocompatibility on the friction surface and low friction coefficient, and can relive aseptic loosening and prolong service life.
Owner:NANJING UNIV OF SCI & TECH

Polymers, supersoft elastomers and methods for preparing the same

Embodiments of the present invention include a material comprising a polymer having a modulus of elasticity less than 10<5 >Pa and a material comprising a polymer having a modulus of elasticity of less than 5x10<4 >Pa. Embodiments also include a material comprising a polymeric network and a multiplicity of side chains attached to the polymeric network. The multiplicity of side chains may have an average molecular weight below the critical molecular weight for entanglements. In certain embodiments it may be advantageous for the side branches to have a glass transition temperature below the use temperature of the material. The polymer network may comprise at least two monomers so that the polymer network is a copolymer. Embodiments of the present invention also include methods of forming a polymer network. Such as, for example, a method of preparing a polymer network comprising cross-linking a polymer, wherein the polymer comprises a multiplicity of side chains. The polymer may be at least one of a polymer brush, a polymer comb, and a nanocomposite material. An additional embodiment may include polymerizing macromonomers in the presence of a crosslinking agent. This embodiment may result in the forming a polymer network, wherein the polymer network comprises a multiplicity of branches attached to the polymer network, wherein the macromonomers may have a molecular weight less than the critical molecular weight for entanglements. Another embodiment of the method of forming a polymer network may comprising polymerizing monomers directly from a crosslinked polymer network. This method may result in forming a branched polymer network, wherein the polymer network comprises a multiplicity of branches attached to the polymer network.
Owner:CARNEGIE MELLON UNIV

Preparation method and application of free nitroxide radical polymer brush polymerization inhibitor

The invention relates to a preparation method of a free nitroxide radical polymer brush polymerization inhibitor, and application of the free nitroxide radical polymer brush polymerization inhibitor in synthesis of epoxy soybean oil acrylic ester. The preparation method comprises the following steps: firstly, grafting a polyglycidyl methacrylate polymer brush on the surfaces of cross-linked polystyrene microspheres by using an electron transfer regenerated catalyst atom transfer free radical polymerization technique, and secondly, bonding tetramethyl piperidine free nitroxide radical onto the polyglycidyl methacrylate polymer brush, thereby obtaining the free nitroxide radical polymer brush. The application comprises: taking the free nitroxide radical polymer brush as a main polymerization inhibitor and a small molecule polymerization inhibitor as a polymerization inhibitor aid, thereby forming a composite polymerization inhibition system for preparing epoxy soybean oil acrylic ester. The composite polymerization inhibition system not only has a high-efficiency polymerization inhibition function in the epoxy soybean oil acrylic ester preparation, but also is easy in recycling the main polymerization inhibitor, namely the free nitroxide radical polymer brush, so that the free nitroxide radical polymer brush can be recycled, and a product can be prevented from self-polymerization when being preserved when a small amount of the polymerization inhibitor is retained in the system.
Owner:廊坊市安次区调河头振达生物技术推广中心
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products