Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

782results about "Electrolytic organic material coating" patented technology

Preparation method of graphene composite anticorrosive coating

The invention discloses a preparation method of a graphene composite anticorrosive coating. The preparation method comprises the following steps: (1) preparing an organic coating solution with a plurality of hydroxyls or amino groups; (2) preparing an oxidized graphene or modified graphene solution; (3) performing metal surface pretreatment; (4) performing electrodeposition to form an organic coating film; and (5) preparing the graphene composite anticorrosive coating. The method is simple and feasible in technology, the film forming speed is obviously improved, and the prepared coating is more compact and uniform; compared with a plain sample, the low-frequency impedance modulus value of the prepared composite coating is improved to 10<6.2> from 10<3.5> by performing electrochemical testing in 3.5wt% NaCl neutral electrolyte solution, the self-corrosion current is also remarkably reduced, and longer effective prevention effect on a matrix can be achieved. Compared with the conventional dip-coating method, the preparation method has lower requirement on the flatness of a metal surface, and controllable preparation can be effectively realized; the prepared coating is non-toxic and environment-friendly, controllable in thickness, and more compact and uniform, and more durable and stable protection effect on the metal matrix can be achieved.
Owner:OCEAN UNIV OF CHINA

Preparation method of nanotube array positive electrode material of lithium sulphur battery

The invention relates to a preparation method of a nanotube array positive electrode material of a lithium sulphur battery, which belongs to a preparation method of positive electrode materials of lithium sulphur batteries and solves the problems, such as poor electrical conductivity and low specific capacity, of an existing positive electrode material of a lithium sulphur battery. The preparation method comprises the following steps: (1) preparing a titanium dioxide nanotube array, (2) depositing a conductive reinforcing material, and (3) depositing elemental sulphur, wherein the steps (2) and (3) can be repeated to form a multiple depositional cycle period, so that a positive electrode material with a multilayer coaxial heterostructure is obtained, and has different sulphur loading capacities. According to the preparation method, the titanium dioxide nanotube array is taken as a substrate material, and the conductive reinforcing material and the elemental sulphur are compounded and deposited and enter titanium dioxide nanotubes to form the positive electrode material with the coaxial heterostructure, so that the conductivity of the positive electrode material is improved, the sulphur loading capacity of the positive electrode material is improved, the cycling performance and specific capacity of a lithium sulphur battery are further improved, and the preparation method has certain impelling action for speeding up the further large scale application process of the sulphated lithium battery.
Owner:HUAZHONG UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products