Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3834 results about "In situ polymerization" patented technology

In polymer chemistry, in situ polymerization is a preparation method that occurs "in the polymerization mixture" and is used to develop polymer nanocomposites from nanoparticles. There are numerous unstable oligomers (molecules) which must be synthesized in situ (i.e. in the reaction mixture but cannot be isolated on their own) for use in various processes. The in situ polymerization process consists of an initiation step followed by a series of polymerization steps, which results in the formation of a hybrid between polymer molecules and nanoparticles. Nanoparticles are initially spread out in a liquid monomer or a precursor of relatively low molecular weight. Upon the formation of a homogenous mixture, initiation of the polymerization reaction is carried out by addition of an adequate initiator, which is exposed to a source of heat, radiation, etc. After the polymerization mechanism is completed, a nanocomposite is produced, which consists of polymer molecules bound to nanoparticles.

Bioprosthetic tissue preparation with synthetic hydrogels

Methods for treating xenogenic tissue for implantation into a human body including in-situ polymerization of a hydrogel polymer in tissue, and tissue treated according to those methods, where the polymerization takes place in tissue that has not been fixed with glutaraldehyde. The polymerization may only fill the tissue, bind the polymer to the tissue, or cross-link the tissue through the polymer, depending on the embodiment. One method includes free radical polymerization of a first vinylic compound, and can include cross-linking through use of a second compound having at least two vinyl groups. Another method utilizes nucleophilic addition polymerization of two compounds, one of which can include PEG and can further include hydrolytically degradable regions. In one embodiment, applicants believe the in-situ polymerization inhibits calcification, and that the polymerization of tissue un-fixed by glutaraldehyde allows for improved penetration of the polymer. The methods find one use in the treatment of porcine heart valve tissue, intended to extend the useful life of the valves by inhibiting calcification. The incorporation of degradable hydrogel regions may initially fill the tissue and reduce any initial inflammatory response, but allow for later infiltration by cells to remodel the tissue.
Owner:MEDTRONIC INC

Electropolymerization molecular imprinting technology-based double-parameter composite micro-sensor and preparation thereof

Relating to sensors and molecular imprinting technologies, the invention discloses an electropolymerization molecular imprinting technology-based double-parameter composite micro-sensor and a preparation thereof. According to the invention, three electrochemical microelectrode systems are integrated on a same chip, and each electrochemical microelectrode system has its independent micro-electrochemical reaction pool. Through encapsulation by a sealant, the integrated chip can form an open composite measurement pool containing three electrochemical microelectrode systems. In the micro-reaction pool of each electrochemical microelectrode system, by injecting a solution from the outside, a molecular imprinting procedure containing in situ polymerization and ultrasonic elution of template molecules can be implemented separately, thus obtaining a molecularly imprinted sensor. The left and right microelectrode systems of the composite micro-sensor respectively recognize two corresponding molecules due to different molecularly imprinted sensitive membranes, and the electrochemical microelectrode system positioned in the middle is used as a differential detection reference so as to deduct background signals and environmental effects of a test system. The composite micro-sensor provided in the invention can recognize two molecules simultaneously.
Owner:INST OF ELECTRONICS CHINESE ACAD OF SCI

Preparation method of all-solid polymer electrolyte through in-situ ring opening polymerization of epoxy compound, and application of the all-solid polymer electrolyte in all-solid lithium battery

The invention discloses a preparation method of an all-solid polymer electrolyte through in-situ ring opening polymerization of an epoxy compound, and an application of the all-solid polymer electrolyte in an all-solid battery. The preparation method is characterized in that a liquid-state epoxy compound, a lithium salt, a battery additive and the like are employed as precursors and are injected into between a positive pole sheet and a negative pole sheet of the battery, and under a heating condition, in-situ polymerization solidification is carried out to form the all-solid polymer electrolyte, and furthermore, the all-solid battery is produced. The ionic conductivity at room temperature of the all-solid polymer electrolyte can reach from 1*10<-5> S/cm to 9*10<-3> S/cm and electric potential window is 3.5-5 V. The all-solid polymer electrolyte is prepared through the in-situ copolymerization method, so that the all-solid polymer electrolyte has excellent contact with electrodes, thereby greatly improving interface compatibility of the solid-state battery, reducing interface wetting and modification steps of the solid-state battery, reducing production cost of the solid-state battery and improving performances of the solid-state battery. The invention also discloses an all-solid polymer lithium battery assembled from the all-solid polymer electrolyte.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Single-layer and multi-layer hollow carbon nanosphere and preparation method and application thereof

The invention discovers and proposes a characteristic that interior species of phenolic resin are nonuniform in distribution in a polymerization process, and discloses a method for preparing a hollow carbon sphere by utilizing the characteristic of phenolic resin. The method comprises: (1) putting phenol into water or a solvent, adjusting the pH, then adding aldehyde and stirring at a certain temperature for a period of time; (2) adding a corrosive agent in a reaction system, stirring at a certain temperature, and selectively removing a part with a relatively low polymerization degree inside a polymer by utilizing a solubility difference of interior species for different solvents, to obtain an intermediate product, that is, a hollow sphere of phenolic resin polymer; and (3) calcining the intermediate product that is obtained in step (2) in an inertia or reducing atmosphere, naturally cooling to room temperature, and thus completing preparation of the hollow carbon sphere. The method is simple and practicable, and the prepared hollow carbon sphere is uniform in shape and controllable in dimension. Moreover, by utilizing a characteristic that the phenolic resin can be in-situ polymerized on surfaces of different nanometer particles, on one hand, a multi-layer hollow structure can be prepared in a multi-cladding and layer-by-layer corrosion manner, and on the other hand, the different nanometer particles can also be packaged in a cavity in an in-situ mode, so as to prepare a nuclear shell or egg yolk-nuclear structure. The prepared hollow carbon sphere has a potential application value in aspects of silicon-carbon negative electrode material, Li-S battery, supercapacitor, heavy metal ion adsorption, and the like.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Preparation method for negative electrode active material of lithium ion battery

The invention relates to a preparation method for a negative electrode active material of a lithium ion battery. The preparation method comprises the following steps: providing a silicon particle and a silane coupling agent which has a hydrolyzable functional group and an organic functional group; mixing the silicon particle with the silane coupling agent in water to form a first mixed liquor, wherein the hydrolyzable functional group of the silane coupling agent is hydrolyzed and chemically grafted onto the surface of the silicon particle; adding a polymer monomer or oligomer into the first mixed liquor to form a second mixed liquor, coating a polymer layer on the surface of the silicon particle by using in situ polymerization so as to form a silicon/polymer composite and allowing the polymer monomer or oligomer to react with the organic functional group of the silane coupling agent during polymerization so as to allow the generated polymer layer to be chemically grafted onto the surface of the silicon particle; and subjecting the silicon/polymer composite to heat treatment to carbonize the polymer layer so as to form a carbon layer coated on the surface of the silicon particle, thereby forming a silicon carbon composite.
Owner:JIANGSU HUADONG INST OF LI ION BATTERY +1

Graphene/carbon black thermoplastic resin master batch with high dispersibility and preparation method thereof

The invention discloses a graphene/carbon black thermoplastic resin master batch with high dispersibility and a preparation method thereof. The graphene/carbon black compound in the master batch is formed in an electrostatic self-assembly manner, and comprises 10-50% of graphene, 5-20% of carbon black, 0.5-10% of surfactant, 10-65% of carrier resin and 2-10% of assistant. The preparation method comprises the following steps: (1) compounding and dispersing graphene by adopting the surfactant to control the positive electricity of the graphene surface; (2) forming a stable graphene/carbon black compound from the modified graphene and carbon black with positive electricity through electrostatic incorporation in a self-assembly manner; (3) preparing the graphene/carbon black thermoplastic resin master batch with high dispersibility by matching with a solution blended process, a melt-blending method and an in-situ polymerization method; (4) adding the assistant to extrude and pelletize, so as to prepare the graphene/carbon black/thermoplastic resin master batch particles after processing the master batch. By adopting the obtained master batch, the problems of difficult charging of graphene powder, uneven dispersion, dust pollution, unstable product performance and the like are solved.
Owner:XIAMEN KNANO GRAPHENE TECH CORP

Carbon nano tube-containing sulfur-based composite cathode material and preparation method thereof

The invention discloses a carbon nano tube-containing sulfur-based composite cathode material and a preparation method thereof. The sulfur-based composite cathode material is a ternary composite material AxByCz, wherein A is a dehydrocyclization product of an acrylonitrile-itaconic acid copolymer; B is elemental sulfur; C is a carbon nano tube; x is more than or equal to 30 weight percent and less than or equal to 60 weight percent; y is more than or equal to 30 weight percent and less than or equal to 60 weight percent; and z is more than or equal to 1 weight percent and less than or equal to 20 weight percent. The preparation method comprises the following steps of: in-situ polymerizing an acrylonitrile-itaconic acid monomer on the surface of the multi-wall carbon nano tube, and performing thermal treatment on both of the acrylonitrile-itaconic acid copolymer and the elemental sulfur, so that the sulfur is uniformly dispersed in a substrate formed by the dehydrocyclization of the acrylonitrile-itaconic acid copolymer. The carbon nano tube-containing sulfur-based composite cathode material and a lithium cathode form a secondary lithium-sulfur battery which is charged and discharged at the room temperature. The carbon nano tube-containing sulfur-based composite cathode material has the reversible specific capacity of 697 mAh/g and high cyclical stability.
Owner:SHANGHAI JIAO TONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products