Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1410 results about "Phenanthroline" patented technology

Phenanthroline (phen) is a heterocyclic organic compound. It is a white solid that is soluble in organic solvents. It is used as a ligand in coordination chemistry, forming strong complexes with most metal ions.

Luminescent element material and luminescent element comprising the same

The light emitting device of the present invention relates to a light emitting device which is characterized in that it is a device with an emissive substance present between an anode and cathode, and which emits light by means of electrical energy, and said device has a least one type of compound denoted by (a) to (d) below. (a) A compound having a plurality of 1,7-phenanthroline skeletal structures (b) A benzoquinoline derivative (c) A spiro compound represented by general formula (1) A1 and A2 are each selected from single bonds, substituted or unsubstituted alkyl chains, ether chains, thioether chains, ketone chains and substituted or unsubstituted amino chains. However, A1<> A2. Z represents carbon or silicon. R1 to R16 are each selected from hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group and a cyclic structure formed with an adjacent substituent. (d) A tetraphenylmethane derivative represented by general formula (2) R17 to R36 are each selected from hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group and a cyclic structure formed with an adjacent substituent. However, at least one of R17 to R36 is selected from substituents represented by general formula (3). -X-Ar (3) X is a single bond or is selected from the following, and Ar denotes a condensed aromatic ring or heteroaromatic ring. In the case where X is phosphorus oxide, then Ar represents an aromatic hydrocarbon or heteroaromatic ring. n is an natural number.
Owner:TORAY IND INC

Copper (i) complexes for optoelectronic devices

ActiveUS20130150581A1Short possible emission decay timeDiminished roll-off behaviorFinal product manufactureGroup 5/15 element organic compoundsSolubilityChlorobenzene
The invention relates to neutral mononuclear copper (I) complexes for emitting light and with a structure according to formula (A) in which: M represents: Cu(I); L∩L represents: a single, negatively charged, bidentate ligand; N∩N represents: a diimine ligand (substituted with R and FG), in particular a substituted 2,2′-bipyridine derivative (bpy) or a substituted 1,10-phenanthroline derivative (phen); R represents: at least one sterically demanding substituent for preventing the planarisation of the complex in the excited state; FG=functional group, and represents: at least one second substituent for increasing solubility in organic solvents. The substituent can also be used for electron transport or alternatively for hole transport, said functional group being bound to the diimine ligands either directly or by means of suitable bridges; and the copper (I) complex: having a ΔE(S1−T1) value of less than 2500 cm−1 between the lowest excited singlet state (S1) and the triplet state (T1) which lies below; having an emission lifespan of at most 20 μs; having an emission quantum yield of greater than 40%, and a solubility of at least 1 g/L in organic solvents, in particular polar organic hydrocarbons such as acetone, methyl ethyl ketone, benzene, toluene, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, dichloroethane, tetrachloroethylene, alcohols, acetonitrile or water.
Owner:SAMSUNG DISPLAY CO LTD

Transition metal single-atom catalyst as well as preparation method and application thereof

The invention provides a transition metal single-atom catalyst. In the catalyst, transition metal single atoms are taken as active ingredients, carbon black is taken as a carrier, the loading capacityof the transition metal single atoms is 0.5-6wt%, and the highest loading capacity of the transition metal single atoms is higher than that of the prior art by 2-3 times. Various low-price transitionmetal single-atom catalysts with high dispersibility and high loading capacity are formed by inducing a limit range and by taking phenanthroline with strong complexation effect as a ligand and takingthe carbon black with high conductivity and high surface activity as the carrier. A preparation method of the transition metal single-atom catalyst has universality and can be used for preparing various low-price transition metal single-atom catalysts; according to the method, a Cr single-atom catalyst, an Nb single-atom catalyst, an Rh single-atom catalyst, a Cd single-atom catalyst, an Os single-atom catalyst and an Ir single-atom catalyst are prepared for the first time. Additionally, the preparation method has the advantages of being low in cost and simple in process and achieving large-scale production. Next, the catalyst has higher selectivity and Faraday efficiency in application of preparation of carbon monoxide by reducing carbon dioxide through electro-catalysis.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Preparation method and application of nitrogen-doped porous carbon nano sheet composite material

The invention discloses a preparation method of a nitrogen-doped porous carbon nano sheet composite material. The preparation method comprises the steps of performing high-temperature carbonization treatment on a mixture which consists of melamine and adjacent phenanthroline iron and serves as a precursor in a tubular furnace under an inert gas environment, and then removing dissolved iron compounds from an acidic solution to obtain a porous carbon nano sheet layer with carbon-coated iron carbide nano particles. The preparation method has the advantages that the technology is simple, the raw materials are cheap, and operation is easy to implement; in the prepared composite material, iron carbide is uniformly dispersed in the carbon nano sheet layer, so that the composite material is high in specific surface area and pore volume; iron carbide nano particles are completely coated by graphitized carbon, so that oxidization and corrosion are hardly caused; the composite material is stable in acidic electrolyte, and the battery activity can be effectively improved; when used as an electrocatalyst, the composite material is relatively high in electrocatalysis efficiency; the preparation method has an important value and significance in the field of preparation of doped carbon nano composite materials and electrocatalysis of proton membrane fuel batteries.
Owner:NANKAI UNIV

Surface functionalized nano-particle and method for preparing its polymer nanometre composite material

The invention relates to nanometer particle surface functionalization and the preparation method of the transparent polymer nanometer composite material, which belongs to the chemical material field. The functionalization for the surface of the nanometer particles can be performed by using an organic small molecule with a nitrogen-containing function (eg. 8-hydroxy quinoline and phenanthroline derivative) though a method of ligand exchanging or direct situ decorating. The functional nanometer particles can be coated directly during the synthetic process or synthetized through ligand exchanging later, and the nanometer particles have a good fluorescence property. The functionalized nanometer particles and the polymer are compounded for preparing the transparent polymer nanometer composite material through a solution co-blending method and a situ bulk polymerization method. The method for functionalizing nanometer particle integrate the functions of organic functional molecules and the functions of nanometer particles into one, and a novel approach for constructing novel functional nanometer particles is provided. The prepared functional nanometer particles/ polymer composites material have important application value in the fields, such as photoelectric apparatus, display devices and solar batteries, and the like.
Owner:NORTHEAST NORMAL UNIVERSITY

Phosphorescent Osmium (II) complexes and uses thereof

There is disclosed herein phosphorescent compounds, uses thereof, and devices including organic light emitting diode (OLEDs) including such compounds. Compounds of interest include: wherein A is Os or Ru The anionic chelating chromophores NˆN, which are formed by connecting one pentagonal ring structure containing at least two nitrogen atoms to a hexagonal pyridine type of fragment via a direct carbon-carbon linkage. L is a neutral donor ligand; the typical example includes carbonyl, pyridine, phosphine, arsine and isocyanide; two neutral L's can also combine to produce the so-called chelating ligand such as 2,2′-bipyridine, 1,10-phenanthroline and N-heterocyclic carbene (NHC) ligand, or bidentate phosphorous ligands such as 1,2-bis(diphenylphosphino)ethane, 1,2-bis(diphenylphosphino)benzene. L can occupy either cis or trans orientation. When L occupies the trans position, the preferred structure contains both the hexagonal fragment of NˆN as well as its pentagonal fragment located at the trans position respect to their counterparts of the second NˆN chromophore. When L occupies the cis position, the preferred structure consists of the pentagonal unit of NˆN chromophores residing opposite to the L. X,1 X2 and X3 independently are C or N; when X2 is N, R1 is omitted, when X3 is N, R2 is omitted, R1 is H, C1-C8 alkyl, C1-C8 substituted phenyl or C1-C4 perfluoroalkyl, R2 is H, F or cyano substituent, X4 is either C or N; X4 may locate at any position of the hexagonal ring, when X4 is N and R3 and R4 are not linked to X4, R3 is H, methyl or C1-C3 small alkyl, R4 is H, methyl or C1-C3 small alkyl, or R3 and R4 together form an additional conjugated unit with structure
Owner:TAO YE +3
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products