Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

933 results about "Diimine" patented technology

Diimines are organic compounds containing two imine (RCH=NR') groups. The most popular derivatives are 1,2-diketones and 1,3-diimines. These compounds are used as ligands and as precursors to heterocycles. Diimines are prepared by condensation reactions where a dialdehyde or diketone is treated with amine and water is eliminated. Similar methods are used to prepare Schiff bases and oximes.

Alpha-nickel diimine compound olefin polymerization catalyst and preparation method thereof, and method for preparing branched polyethylene

The invention discloses an alpha-nickel diimine compound olefin polymerization catalyst and a preparation method thereof, and a method for preparing branched polyethylene. Structural formulas of the alpha-nickel diimine compound olefin polymerization catalyst are shown as a formula (I) and a formula (II), and the preparation method of the alpha-nickel diimine compound olefin polymerization catalyst is simple and low in cost, and can catalyze ethylene polymerization with high activity at a temperature of more than or equal to 80 DEG C to obtain high molecular weight polyethylene. The polyethylene prepared by catalyzing of the alpha-nickel diimine compound olefin polymerization catalyst has high molecular weight, and can prepare molecular weight which reaches more than 10<2>*kg / mol in the temperature range of between 0 and 80 DEG C.
Owner:SUN YAT SEN UNIV

Source reagent compositions and method for forming metal films on a substrate by chemical vapor deposition

A metalorganic complex composition comprising a metalorganic complex selected from the group consisting of: metalorganic complexes comprising one or more metal central atoms coordinated to one or more monodentate or multidentate organic ligands, and complexed with one or more complexing monodentate or multidentate ligands containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F; wherein when the number of metal atoms is one and concurrently the number of complexing monodentate or multidentate ligands is one, then the complexing monodentate or multidentate ligand of the metalorganic complex is selected from the group consisting of beta-ketoiminates, beta-diiminates, C2-C10 alkenyl, C2-C15 cycloalkenyl and C6-C10 aryl.
Owner:ENTEGRIS INC

Copper (i) complexes for optoelectronic devices

ActiveUS20130150581A1Short possible emission decay timeDiminished roll-off behaviorFinal product manufactureGroup 5/15 element organic compoundsSolubilityChlorobenzene
The invention relates to neutral mononuclear copper (I) complexes for emitting light and with a structure according to formula (A) in which: M represents: Cu(I); L∩L represents: a single, negatively charged, bidentate ligand; N∩N represents: a diimine ligand (substituted with R and FG), in particular a substituted 2,2′-bipyridine derivative (bpy) or a substituted 1,10-phenanthroline derivative (phen); R represents: at least one sterically demanding substituent for preventing the planarisation of the complex in the excited state; FG=functional group, and represents: at least one second substituent for increasing solubility in organic solvents. The substituent can also be used for electron transport or alternatively for hole transport, said functional group being bound to the diimine ligands either directly or by means of suitable bridges; and the copper (I) complex: having a ΔE(S1−T1) value of less than 2500 cm−1 between the lowest excited singlet state (S1) and the triplet state (T1) which lies below; having an emission lifespan of at most 20 μs; having an emission quantum yield of greater than 40%, and a solubility of at least 1 g / L in organic solvents, in particular polar organic hydrocarbons such as acetone, methyl ethyl ketone, benzene, toluene, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, dichloroethane, tetrachloroethylene, alcohols, acetonitrile or water.
Owner:SAMSUNG DISPLAY CO LTD

Adhesive composition, film-like adhesive, adhesive sheet, and semiconductor device made with the same

An adhesive composition that is capable of achieving a superior combination of process characteristics such as adherend fill properties (embedability) and low-temperature lamination properties, and semiconductor device reliability such as reflow resistance, as well as a film-like adhesive, an adhesive sheet that exhibits excellent process characteristics including ready releasability from dicing sheets, and a semiconductor device that exhibits excellent productivity, superior adhesive strength when heated and superior moisture resistance, all of which use the adhesive composition. The adhesive composition comprises (A) a thermoplastic resin, (B) a bisallylnadimide represented by a general formula (I) shown below, and (C) a bifunctional or higher (meth)acrylate compound.(wherein, R1 represents a bivalent organic group containing an aromatic ring and / or a straight-chain, branched or cyclic aliphatic hydrocarbon).
Owner:HITACHI CHEM CO LTD

Branched polyolefin polymer tethered with polymerizable methacryloyl groups and process for preparing same

InactiveUS20090253878A1Readily scaled up to industrial scaleSimple and efficientPolyolefinPolyvinyl polymer
A polyolefin polymer comprising one or more terminal polymerizable methacryloyl groups (i.e. tethered to the main body of the polymer) and a novel process for preparing same are herein disclosed. A hyperbranched polyethylene polymer and a process for preparing same are also disclosed. The polymer is prepared by a novel one-pot copolymerization reaction of an olefin, such as ethylene, and a heterobifunctional comonomer comprising a methacryloyl group, catalyzed by a late transition metal α-diimine catalyst which is selectively non-reactive towards methacryloyl groups. The process allows for preparation of polymers with various chain topologies, including linear, branched, and hyperbranched topologies. The terminal methacryloyl groups within the polymer are reactive in further polymerization reactions. Thus, the polymer may be used in materials and applications which require cross-linking or further polymerization, for example, UV / thermal / radical curable crosslinkers for use in thermoset applications.
Owner:YE ZHIBIN +2

Preparation method and application of injectable hyaluronic acid hydrogel

The invention discloses a preparation method of an injectable hyaluronic acid hydrogel. The method comprises the following steps: initiating a condensation reaction of an amino group of adipic dihydrazide and a carboxyl group of the main chain of HA (hyaluronic acid) by 1-ethyl-3-(3-dimethylamino)carbodiimide hydrochloride to obtain a hyaluronic acid-adipic dihydrazide (HA-ADH) derivative with the main chain possessing the amino group, and reacting N-acryloxysuccinimide with the amino group of the HA-ADH to obtain an acrylate functionalized hyaluronic acid derivative; and cross-linking the acrylate functionalized hyaluronic acid derivative with a bismercapto cross-linking agent to form the injectable hyaluronic acid hydrogel. The above acrylate functionalized HA-AC synthesis method is simple and easy, and is suitable for industrial amplified production; the environmental protection, biological inertness and reaction speed controllability of a Michael addition reaction lay a good foundation for the application of the Michael addition reaction in the injectable hyaluronic acid hydrogel; and the HA-AC chemically cross-linked hydrogel has better stability and mechanical performances than physically associated injectable gels.
Owner:BEIJING UNIV OF CHEM TECH

Volatile metal beta-ketoiminate and metal beta-diiminate complexes

Metal ketoiminate or diiminate complexes, containing copper, silver, gold, cobalt, ruthenium, rhodium, platinum, palladium, nickel, osmium, or indium, and methods for making and using same are described herein. In certain embodiments, the metal complexes described herein may be used as precursors to deposit metal and metal-containing films on a substrate through, for example, atomic layer deposition or chemical vapor deposition conditions.
Owner:VERSUM MATERIALS US LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products