Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1454 results about "Ethyl phosphate" patented technology

Triethyl phosphate is a chemical compound with the formula (C 2 H 5) 3 PO 4 or OP(OEt) 3. It is a colorless liquid. It is a colorless liquid. It is the triester of ethanol and phosphoric acid and can be called "phosphoric acid, triethyl ester".

Herbicidal mixtures

InactiveUS20100285959A1BiocideDead animal preservationTransport inhibitorOleic Acid Triglyceride
Disclosed is a herbicidal mixture comprising (a) at least one herbicide compound selected from the pyrimidines of Formula 1, including all geometric and stereoisomers, N-oxides, and salts thereof:
wherein
    • R1 is cyclopropyl, 4-Br-phenyl or 4-Cl-phenyl;
    • X is Cl or Br;
    • R2 is H, C1-C14 alkyl, C2-C14 alkoxyalkyl, C3-C14 alkoxyalkoxyalkyl, C2-C14 hydroxyalkyl or benzyl; and
    • (b) at least one additional herbicide or herbicide safener compound selected from the group consisting of (b1) ACCase inhibitors, (b2) AHAS inhibitors, (b3) photosystem II inhibitors, (b4) photosystem I electron diverters, (b5) PPO inhibitors, (b6) EPSP synthase inhibitors, (b7) GS inhibitors, (b8) VLCFA inhibitors, (b9) auxin mimics, (b10) auxin transport inhibitors, (b11) other herbicides selected from the group consisting of flamprop-M-methyl, flamprop-M-isopropyl, difenzoquat, DSMA, MSMA, bromobutide, flurenol, cinmethylin, cumyluron, dazomet, dymron, methyldymron, etobenzanid, fosamine-ammonium, isoxaflutole, asulam, clomazone, mesotrione, metam, oxaziclomefone, oleic acid, pelargonic acid and pyributicarb, (b12) herbicide safeners selected from the group consisting of benoxacor, 1-bromo-4-[(chloromethyl)sulfonyl]benzene, cloquintocet-mexyl, cyometrinil, dichlormid, 2-(dichloromethyl)-2-methyl-1,3-dioxolane, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-diethyl, methoxyphenone, naphthalic anhydride and oxabetrinil, and their salts. Also disclosed is a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a mixture of the invention (e.g., as a composition described herein).
Owner:ARMEL GREGORY RUSSELL +8

Functional graphene oxide loaded nano-silver antibacterial material as well as preparation method and application thereof

The invention belongs to the technical field of nano-silver antibacterial materials and discloses an aminated polyethylene glycol functional graphene oxide loaded nano-silver antibacterial material, a preparation method of the antibacterial material and an application of the antibacterial material in the fields of bacteriostasis and sterilization. The method comprises the following steps: adding aminated polyethylene glycol into an aqueous solution of graphene oxide, adding 1-ethyl-(3-dimethylaminopropyl) carbonyldiimine hydrochloride and N-hydroxy succinimide, regulating the pH value, stirring, and reacting, thereby obtaining the aminated polyethylene glycol modified graphene oxide; preparing the aqueous solution of the graphene oxide, adding silver nitrate, heating until the solution is boiled after dissolving, adding sodium citrate or NaBH4 aqueous solution, reacting, and cooling, thereby obtaining the aminated polyethylene glycol functional graphene oxide loaded nano-silver antibacterial material. The antibacterial material prepared by the invention has good water solubility and stability, the loading efficiency and antibacterial activity are obviously improved, and the antibacterial material has obvious antibacterial activity and can be widely applied to the fields of bacteriostasis and sterilization.
Owner:JINAN UNIVERSITY

Extraction seperation method of rare-earth element

The invention discloses an extraction seperation method of a rare-earth element. According to extraction seperation method, positive ions and negative ions in a quaternary ammonium salt ionic liquid extracting agent, i.e. 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester trialkyl methyl ammonium and phosphonic acid binary (2-ethylhexyl) ester trialkyl methyl ammonium react with rare earth ions to form neutral complex molecules, and the positive ions and negative ions in the quaternary ammonium salt ionic liquid extracting agent have inner synergistic effect and competitive effect in the process of extracting the rare-earth element, thereby the seperation factor of the rare-earth element is increased. Therefore, the extraction seperation method provided by the invention has the advantages that an interfacial phenomenon is good in the extraction process, no emulsification is generated, and an extracting solvent does not need to be saponified, the extraction seperation method has higher seperation factor of the rare-earth element and particularly high extraction seperation effect on heavy rare earth. In addition, the extraction seperation method of the rare-earth element, which is provided by the invention, has low extraction acidity and back extraction acidity and consumes little acid.
Owner:CHANGCHUN INST OF APPLIED CHEMISTRY - CHINESE ACAD OF SCI

Method for separating zinc, fluorine and chlorine from fluorine- and chlorine-containing zinc sulfate solution

The invention relates to a method for separating zinc, fluorine and chlorine from fluorine- and chlorine-containing zinc sulfate solution, in particular to a method for separating zinc, fluorine and chlorine from fluorine- and chlorine-containing secondary zinc resource Sulfuric acid leaching solution. In the method, during solution pretreatment, zinc powder and calcium oxide are added into the fluorine- and chlorine-containing zinc sulfate solution; during extraction, di-(2-ethylhexyl)phosphate is adopted as an extracting agent and kerosene is adopted as a diluent to prepare an organic phase with certain concentration, the organic phase is mixed with the pretreated solution for extraction, zinc in a water phase is transferred into the organic phase, fluoride ions and chloride ions are remained in the water phase, and the separation of the zinc, fluorine and chlorine is realized; and during back extraction, sulfuric acid solution serves as a back washing agent, the zinc-containing loaded organic phase is mixed for back extraction, the zinc in the loaded organic phase is transferred into the water phase again, zinc sulfate solution is obtained and the organic phase is subjected to impurity removal and recycled. The zinc, fluorine and chlorine separation efficiency is over 95 percent, and the obtained zinc sulfate solution has high purity and can be combined into a purification flow of the traditional zinc smelting. The method has the advantages that: the cost is low, the method is easy to operate, the efficiency is high, and the continuous production can be realized.
Owner:KUNMING UNIV OF SCI & TECH

Method for extracting lithium from salt lake brine

ActiveCN104357676AEasy to operateReduce tributyl phosphate concentrationProcess efficiency improvementHigh concentrationKerosene
The invention provides a method for extracting lithium from salt lake brine. The method comprises the following steps: 1) preparing extract organic phases which comprise a composite extracting agent and a diluent, wherein the composite extracting agent is prepared by mixing tributyl phosphate with N,N-bis(2-ethylhexyl)-3-butanone acetamide according to a volume percent ratio of 50% to 50%; the diluent is sulfonated kerosene; 2) preparing an extract water phase which is an LiCl-MgCl2-H2O system; 3) adding HCl and FeCl3.6H2O to the extract water phase, wherein the ratio of amount of substances of iron and lithium is controlled to be 1.3 to 1, the acid concentration is 0.5mol/L, and the lithium concentration is 1-3g/L; 4) standing after fully mixing the extract water phase obtained in the step 3) with the extract organic phases obtained in the step 1) in a volume ratio of 1 to 2, and then separating a liquid phase. By adopting the method, the problems that the corrosivity of high-concentration tributyl phosphate towards extraction equipment is stronger and the dissolution loss of the extracting agent in water is serious in long-term operation are solved, and the lithium extraction efficiency of the prior art is achieved. The extraction method is simple and reliable to operate.
Owner:QINGHAI INST OF SALT LAKES OF CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products