Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

463 results about "Chirality" patented technology

Chirality /kaɪˈrælɪtiː/ is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek χειρ (kheir), "hand," a familiar chiral object. An object or a system is chiral if it is distinguishable from its mirror image; that is, it cannot be superposed onto it. Conversely, a mirror image of an achiral object, such as a sphere, cannot be distinguished from the object. A chiral object and its mirror image are called enantiomorphs (Greek, "opposite forms") or, when referring to molecules, enantiomers. A non-chiral object is called achiral (sometimes also amphichiral) and can be superposed on its mirror image.

Chiral Metamaterials

A metamaterial includes a dielectric substrate and an array of discrete resonators at the dielectric substrate, wherein each of the discrete resonators has a shape that is independently selected from: an F-type shape; an E-type shape; or a y-type shape. A parameter of a chiral metamaterial is determined and a chiral metamaterial having such a parameter is prepared by the use of a model of the chiral metamaterial. The metamaterial model includes an array of discrete resonators. In one embodiment, each of the discrete resonators has a shape that is independently selected from the group consisting of: an F-type shape; an E-type shape; and a y-type shape. To the metamaterial model, electromagnetic (EM) radiation, preferably plane-polarized EM radiation in a visible, ultraviolet or near-infrared region, having at least one wavelength that is larger than the largest dimension of at least resonator of the metamaterial model, is applied. Varying at least one characteristic of the metamaterial model and / or at least one wavelength of the applied EM radiation modulates EM interaction of the applied EM radiation with the metamaterial model, thereby determining a parameter of the chiral metamaterial. By the use of a model of the chiral metamaterial, a number of discrete resonators of a chiral metamaterial that are arrayed in a direction perpendicular to a propagation axis of EM radiation is also determined.
Owner:UNIVERSITY OF MASSACHUSETTS LOWELL

Cyclodextrin chiral chromatogram fixed phase and preparation method thereof

The invention discloses a cyclodextrin chiral stationary phase, the structure of which is shown in the general formula (I), wherein X is -OCH3 or -OCH2CH3, n is equal to 1-7, and R is -H, -CH3, -COCH3, -COC6H5 and -CONHC6H5. The preparation method of the stationary phase comprises the following steps: a silane coupling agent, sodium azide and a catalyst are added into an organic solvent, then spheroidal silicon is added for preparing azide silica gel derivant; oligomeric ethylene glycol, sodium hydride and propargyl bromide are added into tetrahydrofuran for preparing bialkynyl oligomeric ethylene glycol; monosubstituted nascent and derivative cyclodextrin containing azid groups is prepared; finally, the click chemistry reaction method is used for bonding the cyclodextrin. The cyclodextrin chiral stationary phase has the advantages that the selectivity of the bonding reaction is high, and the surface bonded amount is large; the chiral separation ability is strong, thereby being especially suitable for the chiral separation of a high efficiency liquid chromatography in the reversed-phase mode; the preparation method is simple and has less steps, the bonding reaction is the click chemistry reaction, the reaction condition is mild, and the reaction is carried out in the water solution.
Owner:EAST CHINA UNIV OF SCI & TECH

Chiral metamaterials

A metamaterial includes a dielectric substrate and an array of discrete resonators at the dielectric substrate, wherein each of the discrete resonators has a shape that is independently selected from: an F-type shape; an E-type shape; or a y-type shape. A parameter of a chiral metamaterial is determined and a chiral metamaterial having such a parameter is prepared by the use of a model of the chiral metamaterial. The metamaterial model includes an array of discrete resonators. In one embodiment, each of the discrete resonators has a shape that is independently selected from the group consisting of: an F-type shape; an E-type shape; and a y-type shape. To the metamaterial model, electromagnetic (EM) radiation, preferably plane-polarized EM radiation in a visible, ultraviolet or near-infrared region, having at least one wavelength that is larger than the largest dimension of at least resonator of the metamaterial model, is applied. Varying at least one characteristic of the metamaterial model and / or at least one wavelength of the applied EM radiation modulates EM interaction of the applied EM radiation with the metamaterial model, thereby determining a parameter of the chiral metamaterial. By the use of a model of the chiral metamaterial, a number of discrete resonators of a chiral metamaterial that are arrayed in a direction perpendicular to a propagation axis of EM radiation is also determined.
Owner:UNIVERSITY OF MASSACHUSETTS LOWELL

Berry phase metasurface-based multi-plane holographic multiplexing method

The invention discloses a berry phase metasurface-based multi-plane holographic multiplexing method, and belongs to the field of micronano optical and holographic multiplexing application. The berry phase metasurface-based multi-plane holographic multiplexing method comprises the steps of achieving phase recovery by a 3D-Fienup algorithm, taking different numerical values of reproduction positions of different images, and acquiring a computer generation holographic diagram containing all information; selecting a metal coupling polaron as a berry phase metasurface structure unit, achieving phase modulation based on a berry phase modulation principle, and enabling a polarization state to become a multiplexing path by coding a holographic phase profile conjugated with an original phase to achieve a holographic multiplexing passage selected by circular polarization; making a metasurface phase sheet for recording the computer generation holographic diagram, selecting an emergent circular polarization light orthogonal to chirality of the polarization stat, and optically reproducing a three-dimensional object or a wave surface which is recorded. The holographic multiplexing method with sub-wavelength pixel of visible light and near-infrared bands, ultrathinness, large visual angle and large capacity is provided by the invention; and moreover, the crosstalk can be effectively reduced, and the holographic multiplexing of circular polarization selectivity is achieved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Field effect transistor chiral sensor and manufacture method thereof

The invention discloses a field effect transistor chiral sensor and a manufacture method thereof. By utilizing the structure of a field effect transistor, the chiral sensor comprises a substrate, a gate electrode, a gate insulating layer, an active layer, a source electrode and a drain electrode. The chiral sensor is characterized in that the active layer is made of a quantum dot material with chiral recognizing and detecting function. The quantum dot material of the active layer is a semiconductor nano microcrystal which is modified by chiral molecules and has the size of smaller than 100nm.The invention sensor capable of detecting a chiral substance by using a quantum dot film with the chiral recognizing and detecting function as the active layer of the field effect transistor on the basis of the quantum dot field effect transistor and the manufacture method thereof. The fluorescent chiral molecule modified quantum dot can be also made into a film by the chiral sensor for being used as the field effect transistor active layer, thereby overcoming the defect of chiral molecule detection by the traditional homogeneous phase fluorescent sensor and realizing a more stable detecting signal.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products