Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

566 results about "Peptide nucleic acid" patented technology

Peptide nucleic acid (PNA) is an artificially synthesized polymer similar to DNA or RNA. It was invented by Peter E. Nielsen (Univ. Copenhagen), Michael Egholm (Univ. Copenhagen), Rolf H. Berg (Risø National Lab), and Ole Buchardt (Univ. Copenhagen) in 1991.

Integrated active flux microfluidic devices and methods

InactiveUS6767706B2Rapid and complete exposureQuick and accurate and inexpensive analysisBioreactor/fermenter combinationsFlow mixersAntigenHybridization probe
The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen / antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen / antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene. Hybridization probes can be immobilized on a substrate that forms part of or is exposed to a channel or channels of the device that form a closed loop, for circulation of sample to actively contact complementary probes. Universal chips according to the invention can be fabricated not only with DNA but also with other molecules such as RNA, proteins, peptide nucleic acid (PNA) and polyamide molecules.
Owner:CALIFORNIA INST OF TECH

PNA-DNA-PNA chimeric macromolecules

Macromolecules are provided that have increased nuclease resistance, increasing binding affinity to a complementary strand, and that activate RNase H enzyme. The macromolecules have the structure PNA-DNA-PNA where the DNA portion is composed of subunits of 2'-deoxy-erythro-pento-furanosyl nucleotides and the PNA portions are composed of subunits of peptide nucleic acids. Such macromolecules are useful for diagnostics and other research purposes, for modulating protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to therapeutics.
Owner:IONIS PHARMA INC

Electrochemical detection of nucleic acid sequences

An electrochemical detection system which specifically detects selected nucleic acid segments is described. The system utilizes biological probes such as nucleic acid or peptide nucleic acid probes which are complementary to and specifically hybridize with selected nucleic acid segments in order to generate a measurable current when an amperometric potential is applied. The electrochemical signal can be quantified.
Owner:MAGELLAN DIAGNOSTICS

Integrated active flux microfluidic devices and methods

The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen / antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen / antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene. Hybridization probes can be immobilized on a substrate that forms part of or is exposed to a channel or channels of the device that form a closed loop, for circulation of sample to actively contact complementary probes. Universal chips according to the invention can be fabricated not only with DNA but also with other molecules such as RNA, proteins, peptide nucleic acid (PNA) and polyamide molecules.
Owner:CALIFORNIA INST OF TECH

Method of making biochips and the biochips resulting therefrom

Methods for preparing a biochip are provided herein wherein the biomolecular probe to be used with the biochip is alternatively bound to a hydrogel prepolymer prior to or simultaneously with polymerization of the prepolymer. In particularly preferred embodiments, a polyurethane-based hydrogel prepolymer is derivatized with an organic solvent soluble biomolecule, such as a peptide nucleic acid probe in aprotic, organic solvent. Following derivatization of the prepolymer, an aqueous solution, for example sodium bicarbonate, preferably buffered to a pH of about 7.2 to about 9.5, is added to the derivatized prepolymer solution to initiate polymerization of the hydrogel. Alternatively, a water soluble biomolecule, such as DNA or other oligonucleotide, is prepared in an aqueous solution and added to the polyurethane-based hydrogel prepolymer such that derivatization and polymerization occur, essentially, simultaneously. While the hydrogel is polymerizing, it is microspotted onto a solid substrate, preferably a silanated glass substrate, to which the hydrogel microdroplet becomes covalently bound. Most preferably the hydrogel microdroplets are at least about 30 mum thick, for example about 50 mum to about 100 mum thick. The resulting biochips are particularly useful for gene discovery, gene characterization, functional gene analysis and related studies.
Owner:BIOCEPT INC

PNA monomer and precursor

This application relates to monomers of the general formula (I) for the preparation of PNA (peptide nucleic acid) oligomers and provides method for the synthesis of both predefined sequence PNA oligomers and random sequence PNA oligomers: whereinR1, R2, R3, R4, R5 is independently H, halogen, C1–C4 alkyl, nitro, nitrile, C1–C4 alkoxy, halogenated C1–C4 alkyl, or halogenated C1–C4 alkoxy, wherein at least one of R1, R3, and R5 is nitro;R6 is H or protected or unprotected side chain of natural or unnatural α-amino acid; andB is a natural or unnatural nucleobase, wherein when said nucleobase has an exocyclic amino function, said function is protected by protecting group which is labile to acids but stable to weak to medium bases.
Owner:PANAGENE INC

Antisense compositions targeted to beta1-adrenoceptor-specific mRNA and methods of use

Disclosed are antisense oligonucleotide, polynucleotide, and peptide nucleic acid compounds that specifically bind to mammalian mRNA encoding a beta1-adrenoceptor polypeptide and that are useful in the control and / or treatment of cardiac dysfunction, hypertension, hypertrophy, myocardial ischemia, and other cardiovascular diseases in an affected mammal, and preferably, in a human subject. The antisense compounds disclosed herein, and pharmaceutical formulations thereof, provide sustained control of beta1-adrenoceptor expression over prolonged periods, and achieve therapeutic effects from as little as a single dose. Administration of these antisense compositions to approved animal models resulted in a decrease in blood pressure, but no significant change in heart rate. Use of such antisense compositions in the reduction of beta1-adrenoceptor polypeptides in a host cell expressing beta1-adrenoceptor-specific mRNA, and in the preparation of medicaments for treating human and animal diseases, and in particular, hypertension and other cardiac dysfunction is also disclosed.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Peptide nucleic acids

A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.
Owner:BUCHARDT OLE +3

Nanopore sequencing using charge blockade labels

ActiveUS8652779B2Different levelDifferent modulus propertySludge treatmentVolume/mass flow measurementNucleotidePolymerase L
The invention relates to devices and methods for nanopore sequencing. The invention includes compositions and methods of nucleic acid sequencing using a single polymerase enzyme complex comprising a polymerase enzyme and a template nucleic acid attached proximal to a nanopore, and nucleotide analogs in solution comprising charge blockade label that are attached to the polyphosphate portion of the nucleotide analog such that the charge blockade labels are cleaved when the nucleotide analog is incorporated into a growing nucleic acid and the charge blockade label is detected by the nanopore to determine the presence and identity of the incorporated nucleotide and thereby determine the sequence of a template nucleic acid.
Owner:PACIFIC BIOSCIENCES

Cell Penetrating Peptide Conjugates for Delivering of Nucleic Acids into a Cell

The invention provides cell penetrating peptide-nucleic acid conjugates having the formula P-L-N, wherein P is a cell penetrating peptide, N is a nucleic acid, preferably an oligonucleotide and more preferably a siRNA, and L is a hydrophilic polymer, preferably a polyethylene glycol (PEG)-based linker linking P and N together. Compositions, methods of use and methods for producing such conjugates are also disclosed.
Owner:CELLECTIS SA

Double-stranded peptide nucleic acids

A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.
Owner:NIELSEN PETER E

Peptide nucleic acid incorporating a chiral backbone

A novel class of peptide nucleic acid monomers are synthesized having chirality in the backbone. Peptide nucleic acid oligomers are synthesized to incorporate these chiral monomers.
Owner:PETER E NIELSEN

Spotting device for manufacturing DNA microarray and spotting method using the same

A spotting device for manufacturing a DNA microarray and a spotting method using the same are provided. The spotting device for dropping and immobilizing a solution of biomolecules, for example nucleic acids such as probe DNA, mRNA, and peptide nucleic acid (PNA), and proteins on a DNA microarray surface to manufacture a DNA microarray, includes a first microchannel with a tube shape; a supplying unit supplying the solution of biomolecules to the first microchannel; a biomolecule solution droplet forming unit cross-linked to the first microchannel and forming biomolecule solution droplets with a predetermined size by periodically jetting a gas toward the biomolecule solution flowing in the first microchannel; a second microchannel linked to the first microchannel and having a greater diameter than the first microchannel; a cooling unit surrounding at least a part of the second microchannel to freeze the biomolecule solution droplets which pass through the second microchannel; and a spotting unit thawing the frozen biomolecule solution droplets and dropping the thawed biomolecule solution droplets on a surface of the DNA microarray. The spotting device can form spots with uniform shape, minimize an effect of temperature on biomolecules, and easily manipulate biomolecules when manufacturing a DNA microarray.
Owner:SAMSUNG ELECTRONICS CO LTD

Novel immunogenic epitope for immunotherapy

The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumour-associated T-helper cell peptide epitopes, alone or in combination with other tumour-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions which stimulate anti-tumour immune responses. The present invention relates to novel peptide sequences and their variants derived from HLA class I and class II molecules of human tumour cells which can be used in vaccine compositions for eliciting anti-tumour immune responses.
Owner:IMMATICS BIOTECHNOLOGIES GMBH

Chemical modification of DNA using peptide nucleic acid conjugates

Complexes comprising a nucleic acid molecule and a conjugated peptide nucleic acid (PNA). The PNA may be labeled or conjugated to a protein, peptide, carbohydrate moiety or receptor ligand. These complexes are used to transfect cells to monitoring plasmid biodistribution, promote nuclear localization, induce transcriptional activation, lyse the endosomal compartment and facilitate transfection. These complexes increase the efficiency of expression of a particular gene.
Owner:GENE THERAPY SYST +1

Compositions and methods for targeted inactivation of HIV cell surface receptors

Compositions for targeted mutagenesis of cell surface receptors for HIV and methods of their use are provided herein. The compositions include triplex-forming molecules that bind to duplex DNA in a sequence specific manner at target sites to form triple-stranded structures. The triplex-forming molecules can be triplex-forming oligonucleotides (TFOs) or peptide nucleic acids (PNAs). The triplex-forming molecules are useful to induce site-specific homologous recombination in mammalian cells when used in combination with donor oligonucleotides. The triplex-forming molecules target sites within or adjacent to genes that encodes cell surface receptors for human immunodeficiency virus (HIV). This binding stimulates homologous recombination of a donor oligonucleotide to cause mutations in HIV cell surface receptor genes that result in one or more deficiencies in the ability of the encoded receptor to bind to HIV and allow its transport into the cell. Methods for ex vivo and in vivo prophylaxis and therapy of HIV infection using the disclosed compositions are also provided.
Owner:YALE UNIV

Process for identification of genes encoding proteins having cell proliferation-promoting activity

The present invention is directed to selection systems for the identification of cell proliferation genes based on functional analysis. More specifically, the invention is directed to a process for the identification of a cell proliferation promoting activity, the isolation of genes involved in such cell proliferation promoting activity, and the use of the so identified genes for the diagnosis or treatment of a disease associated with excessive cell proliferation. The invention further is directed to the design and development of antibodies, peptides, nucleic acids, and other compounds which specifically interfere with the function of the identified gene and / or its gene product, and pharmaceutical compositions comprising such compounds, for the treatment of diseases associated with inappropriate or unregulated cell proliferation.
Owner:DELTAGEN PROTEOMICS

Human bikunin

InactiveUS7019123B2Prolongation in clot timeIncrease concentrationAntibacterial agentsNervous disorderPlacental bikuninNucleic acid sequencing
The instant invention provides for proteins, polypeptides, nucleic acid sequences, constructs, expression vectors, host cells, pharmaceutical compositions of, and methods for using human placental bikunin, serine protease inhibitor domains, and fragments thereof
Owner:BAYER CORPORATION

Novel immunotherapy against several tumors of the blood, such as acute myeloid leukemia (AML)

ActiveUS20150320848A1Strong upregulationPromotes formationBacteriaHydrolasesHla class iiHuman tumor
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Owner:IMMATICS BIOTECHNOLOGIES GMBH

Nucleic acid transcription method

The present invention relates to methods for generating an amplified nucleic acid portion of a template nucleic acid, comprising obtaining said template nucleic acid, annealing at least one oligonucleotide primer to said template nucleic acid, annealing at least one oligonucleotide stopper to said template nucleic acid, elongating the at least one oligonucleotide primer in a template specific manner until the elongating product nucleic acid reaches the position of an annealed oligonucleotide stopper, whereby the elongation reaction is stopped, wherein in said elongation reaction said oligonucleotide stopper is not elongated, and wherein the elongated product nucleic acid is ligated to the 3′ end of said oligonucleotide stopper—said stopper may also be a primer itself and uses and kits for performing said method.
Owner:LEXOGEN GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products