Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

18215 results about "Rapid detection" patented technology

Integrated active flux microfluidic devices and methods

InactiveUS6767706B2Rapid and complete exposureQuick and accurate and inexpensive analysisBioreactor/fermenter combinationsFlow mixersAntigenHybridization probe
The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen/antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen/antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene. Hybridization probes can be immobilized on a substrate that forms part of or is exposed to a channel or channels of the device that form a closed loop, for circulation of sample to actively contact complementary probes. Universal chips according to the invention can be fabricated not only with DNA but also with other molecules such as RNA, proteins, peptide nucleic acid (PNA) and polyamide molecules.
Owner:CALIFORNIA INST OF TECH

Integrated active flux microfluidic devices and methods

The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen / antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen / antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene. Hybridization probes can be immobilized on a substrate that forms part of or is exposed to a channel or channels of the device that form a closed loop, for circulation of sample to actively contact complementary probes. Universal chips according to the invention can be fabricated not only with DNA but also with other molecules such as RNA, proteins, peptide nucleic acid (PNA) and polyamide molecules.
Owner:CALIFORNIA INST OF TECH

Methods and systems for the rapid detection of concealed objects

The present invention provides for an improved scanning process having a first stage to rapidly identify a threat location and a second stage to accurately identify the nature of the threat. The improved scanning process maintains a high degree of accuracy while still providing an operationally desirable high throughput. The present invention also uses improved processing techniques that enable the substantially automated detection of threats and decrease the dependence on operator accuracy. One embodiment of the present invention provides an apparatus for identifying an object concealed within a container. It comprises a first stage inspection system having at least two X-ray projection systems to generate a first set of data and a plurality of processors in data communication with the first stage inspection system. The processors process the first set of data to generate at least two images. The two images are used to identify at least one target region from the two images. A second stage inspection system is then used to generate an inspection region which is then positioned relative to the target region and made to at least partially physically coincide with the target region. A second set of data is produced specifically from the inspection region, data which have a high degree of specificity for the material in the inspection region.
Owner:RAPISCAN INC

Device for rapid detection and identification of single microorganisms without preliminary growth

This invention describes a device consisting of a micro channel plate, filter, and porous holder for filter, which is substituted by a pure agar block during method performance, and supportive structural elements. The device is intended for rapid detection and/or identification of microorganisms. Microorganisms are trapped by filtration in long (diameter/length=1/10-1/100), cylindrical, parallel, micro-channels that are open from both sides and attached to a filter from one side. A micro channel plate houses a multiplicity of micro channels (possible diameter of each channel=1-30 μm, length 100-1000 μm, and number on centimeter2−100,000-1,000,000). The micro channel plate with cells trapped on the surface of the filter is attached to an agar block impregnated by artificial substrate(s) so that the molecules of the artificial substrates will fill all micro channels. Trapped cells produce colored or fluorescent molecules from artificial substrates. These molecules are collected in the very small volume of a micro channel. The extremely small volume of a micro channel (1/25 million part of milliliter) allows it to collect a detectable concentration of color or fluorescent substances in a very short time (several minutes). Even one cell from a filtrated sample can be detected by the enzyme—artificial substrate method and/or identified by enzyme immunoassay.
Owner:NANOLOGIX INC

Quick detection method for objective on the basis of multi-scale characteristic pattern

The invention discloses a quick detection method for an objective on the basis of a multi-scale characteristic pattern. The method comprises the following steps that: firstly, through a convolutionalneural network, automatically extracting the multi-scale characteristic pattern to avoid a complex characteristic design and extraction process in a traditional method; secondly, putting forward an effective characteristic pattern fusion method by considering a situation that characteristic expressions learnt by different convolutional layers are different, realizing by a lightweight compression type bilinear function to improve characteristic pattern fusion efficiency and enrich context information, and on the basis, combining the multi-scale characteristic pattern with a channel attention mechanism to highlight useful information and inhibit redundant information so as to further enhance characteristic pattern representation ability; and finally, using the enhanced multi-scale characteristic pattern for objective detection, and obtaining an optimal model through multiple iterative training. Compared with the prior art, the method which is put forward by the invention lowers time costas far as possible while detection accuracy is improved, the quick detection of the objective is realized, and the method has a wide application prospect on the aspects of mobile robots, automatic driving, intelligent video surveillance and the like.
Owner:SICHUAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products