Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

918results about How to "Excellent rate performance" patented technology

Titanium dioxide/graphene nanocomposite material and preparation method and application thereof

InactiveCN102569761AShape is easy to controlControllable surface structureCell electrodesGraphene nanocompositesHigh energy
The invention relates to a titanium dioxide/graphene nanocomposite material, a preparation method of the nanocomposite material and application of the nanocomposite material in the field of energy source and cleaning environment. The graphene accounts for 1-25wt% and the balance is titanium dioxide. Morphology of the titanium dioxide is a mesoporous structure or a structure with a dominant high energy surface, and titanium dioxide is scattered uniformly on the surface of graphene. According to the invention, by adopting a titanium source and graphene as initial materials, and water or organic solvents as reaction solvents, the nanocomposite material with titanium dioxide with the mesoporous structure or a titanium dioxide nano sheet with the dominant high energy surface compounded with graphene can be obtained through hydrothermal synthesis or a hydrolysis reaction. The invention can be carried out in an aqueous solution system and the crystallinity of the product is high. The composite material can be applied to a cathode material of a power ion battery, has a higher charge-discharge capacity, is excellent in high current charge and discharge, stable in circulating performance, has very good photocatalytic performance and can be used to light degradation of organic pollutants and water photolysis for preparing hydrogen.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Method for recycling positive material from water-system waste lithium iron phosphate battery

The invention discloses a method for recycling a positive material from a water-system waste lithium iron phosphate battery. The method comprises the following steps: elaborately disassembling fully-discharged waste lithium iron phosphate battery to obtain an undamaged positive plate, separating a positive active material from a current collector in a way of immersing through deionized water, and drying and ball-milling the active material to obtain a lithium iron phosphate positive material to be recycled; respectively testing carbon content and ratio of Li, Fe and P elements of the lithium iron phosphate positive material to be recycled, adding a lithium source and an iron source, adjusting a mole ratio of Li to Fe to P to be (1.0-1.1):1:1, further adding the lithium source, the ion source and the phosphate source according to a ratio of 1:1:1 and adjusting C content ratio in the material; and performing ball milling, low-temperature pre-sintering and high-temperature sintering on the material of which ratio of the elements is adjusted to obtain the recycled lithium iron phosphate positive material. The recycled material has the advantages that 0.1C discharging capability can reach up to 156mAh/g, 2C discharging capability can reach up to 120mAh/g, the retention ratio of 0.1C discharging capability after 50 times of recycling is greater than 99% and various electrochemical properties are excellent. The method disclosed by the invention is low in cost and simple in process; the secondary pollution is avoided.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method of high density nickel cobalt lithium manganate positive electrode material

The invention discloses a preparation method of a high density nickel cobalt lithium manganate positive electrode material, LiNixCoyMnzO2. The preparation method comprises the following steps: firstly, mixing a nickel salt solution, a cobalt salt solution and a manganese salt solution according to a certain mol ratio, adding the mixed solution, a complexing agent solution and a precipitant solution together to a stirring reaction kettle with a base solution, fully reacting, carrying out solid-liquid separation, and washing and drying to obtain a globular nickel cobalt manganese oxyhydroxide precursor; calcining the precursor at the temperature of 350-900 DEG C for 2-20 hours to obtain a globular nickel cobalt manganese oxide precursor, and smashing the globular nickel cobalt manganese oxide precursor at high speed to obtain a mono-crystalline nickel cobalt manganese oxide precursor; mixing a lithium source and the mono-crystalline precursor according to a certain mol ratio, calcining at the temperature of 700-980 DEG C for 2-20 hours, and smashing and classing to obtain the mono-crystalline nickel cobalt lithium manganate positive electrode material. The preparation method provided by the invention has the advantages that the compacted density of the prepared nickel cobalt lithium manganate material is large, the specific capacity is high, the rate property and consistency are good, the preparation method is simple, and the preparation process is easy to control and operate.
Owner:HUNAN SOUNDDON NEW ENERGY

Porous carbon electrode material based on chitosan and derivative of chitosan thereof as well as preparation method and application of porous carbon electrode material

The invention discloses a porous carbon electrode material based on chitosan and a derivative of chitosan as well as a preparation method and application of the porous carbon electrode material. According to a hard template carbonization method, by taking a hollow silicon oxide ball as a template and taking chitosan and a derivative of chitosan as carbon source precursors, liquid-phase impregnation, high-temperature carbonization, template removing and the like are carried out so as to obtain the porous carbon electrode material suitable for a lithium ion battery and a supercapacitor. The prepared porous carbon electrode material simultaneously has the characteristics of a nitrogen-doped structure and a macroporous-mesoporous-microporous graded pore structure, wherein the nitrogen-doped content can be controlled by using different types of chitosans; the graded pore structure can be controlled by changing the size of the particle diameter and the wall thickness of each silicon oxide ball and regulating the mass of the chitosan solution. Compared with the commercialized graphite, the porous carbon electrode material prepared according to the method disclosed by the invention has the advantages that the specific capacity is obviously increased and the rate performance of the obtained porous carbon electrode material is maintained well. The porous carbon electrode material is simple in preparation process, has no strict requirement to equipment and is suitable for industrial production.
Owner:HUBEI ENG UNIV

Modified high nickel ternary positive electrode material and its preparation method and lithium ion battery

The invention discloses a modified high nickel ternary positive electrode material. The surface of a high nickel ternary positive electrode material is coated with a coating layer containing a fast ion conductor. The fast ion conductor has the chemical general formula of Li3x1La2/3-x1Ma1TiNz1O3, Li2+2x2Zn1-x2GeO4 or LiM'2(PO4)3, wherein M represents Ba<2+> and/or Sr<2+>, N represents Al<3+> and/orZr<4+>, x1 is greater than or equal to 0.04 and less than or equal to 0.167, a1 is greater than or equal to 0 and less than or equal to 1, z1 is greater than or equal to 0 and less than or equal to 1, x2 is greater than -0.3 and less than 0.8, and M' represents one or more of Zr, Ti, Ge and Hf. Compared with the existing positive electrode material, the modified high nickel ternary positive electrode material is provided with the coating layer containing the fast ion conductor and the coating layer can react with residual lithium on the surface of the material to reduce residual lithium on the surface of the material and inhibit side reactions of the residual lithium and the electrolyte so that material surface stability and cycle performances are improved. The modified high nickel ternary positive electrode material has good lithium ion deintercalation ability, improves the first discharge capacity of the material and first coulombic efficiency and has a good application prospect. The invention also discloses a preparation method of the modified high nickel ternary positive electrode material and a lithium ion battery.
Owner:CONTEMPORARY AMPEREX TECH CO

Cathode material for fast lithium ion conductor phase-modified lithium ion battery and preparation method thereof

The invention discloses a cathode material for a fast lithium ion conductor phase-modified lithium ion battery and a preparation method thereof. The key points of the technical scheme are as follows: the cathode material for the fast lithium ion conductor phase-modified lithium ion battery is a composite material consisting of a rare-earth element doped composite layered lithium ion battery cathode material xLi2MO3 (1-x) LiN(1-y)RyO2 (M is Mn, Ti or Sn, N is Mn, Ni, Co, Fe, Cr, V or Mo, R is one or more than one of Sc, Y, Pr, Nd, La, Ce, Sm, Yb, Eu and Gd, x is larger than 0 and smaller than 1, and y is larger than 0 and smaller than 0.2) and a fast lithium ion conductor, wherein the molar ratio of the fast lithium ion conductor to the rare-earth element doped composite layered lithium ion battery cathode material is n:1, and n is larger than 0 and smaller than or equal to 0.15. The invention also discloses a preparation method of the cathode material for the fast lithium ion conductor phase-modified lithium ion battery. The cathode material for a fast lithium ion conductor phase-modified lithium ion battery has the advantages of high specific capacity, good rate capacity, stability in recycling and strong temperature adaptation.
Owner:HENAN NORMAL UNIV

Flake MoS2/graphene composite aerogel and preparation method thereof

The invention relates to a flake MoS2/graphene composite aerogel and a preparation method thereof and belongs to the technical field of anode materials of lithium ion batteries. The preparation method comprises the following steps: ultrasonically dispersing a certain quantity of graphene oxide solution into deionized water, adding a certain quantity of water-soluble molybdate and thiourea, then adding 0.1-3mL organic amine solution, taking out a cylindrical product after hydrothermal reaction at the temperature of 160-240 DEG C, freeze-drying, and then carrying out thermal treatment for 2h in the mixed atmosphere of argon and hydrogen at the temperature of 800 DEG C to obtain the flake MoS2/graphene composite aerogel. According to the flake MoS2/graphene composite aerogel and the preparation method thereof disclosed by the invention, thin layers of graphene are connected with one another in a staggering mode to form a three-dimensional ordered conductive network and form micron pore canals, MoS2 is uniformly dispersed on the ultra-large superficial area, and thus, the problems of volume expansion and crushing materials are effectively solved; meanwhile, the structure stability and the cycle performance of the flake MoS2/graphene composite aerogel, serving as the anode material, are improved.
Owner:SHANGHAI UNIV

Preparation method of novel porous skeleton MIL-101(Cr)@S/graphene composite material for cathode of lithium sulfur battery

The invention discloses a preparation method of a metal organic skeleton MIL-101(Cr)@S/graphene composite material as the cathode material of a lithium sulfur battery. The preparation method comprises the following steps of: evenly loading sulfur into a three-dimensional pore channel of MIL-101(Cr) by a melting diffusing method, and mixing with graphene, so that the MIL-101(Cr)@S/graphene composite material can be prepared. The metal organic skeleton crystal material in the composite material is has superhigh specific surface area and pore volume and has a skeleton structure which has medium-mirco double pores, so that the dual effects of dispersing and fixing the sulfur grains can be played, and the whole electrical conductivity of the composite material can be improved due to graphene, so that the polarization of the material can be weakened, the discharge multiplying power performance can be improved, the coulomb efficiency can be improved and the like. The electrochemical performance test shows that the discharge specific capacity of the MIL-101(Cr)@S/graphene composite material prepared by the method can reach 1087mAh/g under the condition that the multiplying power is less than 0.1C, and the discharge specific capacity of the MIL-101(Cr)@S/graphene composite material prepared by the method is respectively kept at 807 and 387mAh/g under the condition that the multiplying power is 0.8C and 2.4C when the circulation times is 116 and 150. The preparation method has the advantages that the preparation method has the characteristics of being simple in process, convenient to operate, good in material performance and the like, and is suitable for large-scale industrial production.
Owner:GUANGZHOU HKUST FOK YING TUNG RES INST

Preparation method of positive pole material (spinel type lithium nickel manganese oxide) of high-voltage lithium ion battery

ActiveCN103227323AAccurately control the ratioReduce concentrationCell electrodesElectrical batteryNickel compounds
The invention relates to a preparation method of a positive pole material (spinel type lithium nickel manganese oxide) of a high-voltage lithium ion battery, which comprises the following steps: simultaneously dissolving a lithium-containing compound, a manganese-containing compound and a nickel-containing compound instead of adding a lithium source afterwards, and ensuring that the lithium compound, the nickel compound and the manganese compound are evenly mixed; and adding precipitant to generate manganese-containing precipitate, wherein the generated manganese-containing precipitate provides crystal nuclei for further precipitation in the hydrothermal process, particles having different sizes can be obtained by controlling hydrothermal conditions, the particle sizes of the products can be increased by decreasing the concentrations of the metal salts, increasing the hydrothermal temperature and prolonging the hydrothermal time, and materials having different shapes can be obtained or porous materials can be prepared by adding different additives. The method omits the steps of filtration and water washing; and the synthesis process is economic and environment-friendly. The lithium nickel manganese oxide material prepared by the invention is in a spinel structure, and is high in crystallinity and excellent in electrochemical performance; and the specific capacity can be up to 130-142mAh/g, 120-135mAh/g and 105-120mAh/g in case of 1C, 2C and 5C rate discharge.
Owner:南京时拓能源科技有限公司

Preparation method of lithium-sulphur battery positive pole material with sulfur-graphene composite structure

ActiveCN103219519AImprove conductivityShort migration channelCell electrodesOrganic solventSulfur
The invention relates to the technical field of batteries, and particularly provides a preparation method of a lithium-sulphur battery positive pole material with a sulfur-graphene composite structure. The preparation method comprises the steps of mixing sulphur powder and organic amine to prepare first dispersion liquid, wherein the weight-volume ratio of sulphur and the organic amine is 0.05-0.4 g:1 mL; dispersing graphene into an organic solvent to prepare second dispersion liquid, wherein the weight-volume ratio of the graphene and the organic solvent is 0.0005-0.02 g:1 mL; dripping the first dispersion liquid to the second dispersion liquid, and uniformly mixing to form third dispersion liquid; adding water or acid liquor to the third dispersion liquid, and continuing to stir so that a sulfur-graphene composite is separated out from the third dispersion liquid; carrying out solid-liquid separation on the third dispersion liquid, and drying an obtained first solid to obtain the lithium-sulphur battery positive pole material. The lithium-sulphur battery prepared through the method provided by the invention has the advantages of good coulomb efficiency and recycling; and the preparation method provided by the invention is simple, fast and low in consumption.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Method for preparing silicon-carbon composite anode and lithium ion battery

The invention discloses a silicon-carbon composite anode comprising a silicon source and a carbon source, wherein silicon source is monatomic silicon, the particle size distribution is 100 nm to 80 microns, and the mass of the silicon source accounts for 10-80% of the total mass of the silicon-carbon composite anode; the carbon source comprises a carbon anode material and a conductive agent, the carbon anode material is one or more of carbon fiber, graphite and mesocarbon microbead, and the mass of the carbon anode material accounts for 10-90% of the total mass of the carbon source. According to the silicon-carbon composite anode disclosed by the invention, one-step coating forming, hot pressing flaking, carbonization treatment and high-temperature calcination are carried out on anode slurry prepared by mixing the silicon source with the carbon source, so as to guarantee that the silicon material is effectively dispersed in a carbon skeleton, the prepared silicon-carbon anode can effectively relieve the volume expansion of the silicon material in charging and discharging processes in a circulation process and guarantee excellent cycle performance of the battery; the silicon-carbon composite anode is prepared by one-step coating forming, and no current collector is needed, so that the production process is simplified and the battery is guaranteed to have high energy density; meanwhile, the invention further provides a lithium ion battery containing the silicon-carbon composite anode.
Owner:江苏中兴派能电池有限公司

Surface clad lithium ion battery positive material precursor, and preparation method and application thereof

The invention relates to a surface clad lithium ion battery positive material precursor, and a preparation method and application thereof. The precursor has the composition of NixCoyMnzM1-x-y-z(OH)2, wherein x is greater than 0 and less than 0.8, y is greater than 0 and less than 0.5 and z is greater than 0 and less than 0.5; M refers to a cladding metal ion which is one or more selected from Al, Zn, Zr, Co, Ti, Sn, Mg and the like; the precursor is composed of a core part and a metal ion nanoparticle layer covering the core surface. The molecular formula of the core part is NikConMn1-k-n(OH)2, wherein k is greater than 0 and less than 0.8 and n is greater than 0 and less than 0.5. As the metal ion nanoparticle cladding layer is formed through even growth in a liquid phase, an excellent and close cladding layer can be formed on the spherical surface; the cladding layer is formed with an oxide with stable chemical properties through subsequent treatment, so that the positive material can be isolated from the electrolyte, side reaction can be reduced, dissolution of metal ions can be inhibited and collapse of the material structure in repeated charge/discharge processes can be lowered down; therefore, the cycle performance, safety performance and rate capability of the material are optimized; as a result, the material is capable of better meeting the requirements of a power battery.
Owner:SUZHOU GCL ENERGY TECH DEV CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products