Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

377 results about "Graphene nanocomposites" patented technology

Titanium dioxide/graphene nanocomposite material and preparation method and application thereof

InactiveCN102569761AShape is easy to controlControllable surface structureCell electrodesGraphene nanocompositesHigh energy
The invention relates to a titanium dioxide/graphene nanocomposite material, a preparation method of the nanocomposite material and application of the nanocomposite material in the field of energy source and cleaning environment. The graphene accounts for 1-25wt% and the balance is titanium dioxide. Morphology of the titanium dioxide is a mesoporous structure or a structure with a dominant high energy surface, and titanium dioxide is scattered uniformly on the surface of graphene. According to the invention, by adopting a titanium source and graphene as initial materials, and water or organic solvents as reaction solvents, the nanocomposite material with titanium dioxide with the mesoporous structure or a titanium dioxide nano sheet with the dominant high energy surface compounded with graphene can be obtained through hydrothermal synthesis or a hydrolysis reaction. The invention can be carried out in an aqueous solution system and the crystallinity of the product is high. The composite material can be applied to a cathode material of a power ion battery, has a higher charge-discharge capacity, is excellent in high current charge and discharge, stable in circulating performance, has very good photocatalytic performance and can be used to light degradation of organic pollutants and water photolysis for preparing hydrogen.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Metal/grapheme nanocomposite and preparation method thereof

The invention discloses a metal/grapheme nanocomposite and a preparation method thereof. The method comprises a photo-reduction one-step method and a photocatalytic reduction one-step method. The photo-reduction one-step method comprises the steps as follows: a grapheme oxide and metal complex acid or inorganic salt and a photo-reduction agent are mixed at the room temperature or under the condition of an ice-water bath, and under the light condition, organic negative hydrogen donors reduce metal ions and the grapheme oxide, so that a product is obtained. One approach of the photocatalytic reduction one-step method comprises the steps as follows: the grapheme oxide and the metal complex acid or salt are mixed in a DMF (dimethyl formamide) water solution containing a reducing agent, a metal ligand and a photocatalyst or in a water solution, catalysis is performed through the catalyst under the light condition, and at the same time, the reducing agent reduces the metal ions and the grapheme oxide, so that a product is obtained; and the other approach of the photocatalytic reduction one-step method comprises the steps as follows: the grapheme oxide and a metal organic complex are mixed in a DMF water solution containing the reducing agent and the photocatalyst or in a water solution, then catalysis is performed through the catalyst under the light condition, and the reducing agent reduces the metal organic complex and the grapheme oxide, so that a product is obtained.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Method for preparing metal oxide-graphene nanocomposite and method for preparing electrode using metal oxide-graphene nanocomposite

Disclosed is a method of preparing a metal oxide-graphene nanocomposite, including preparing a nanocomposite material, forming graphene flakes by pretreating the nanocomposite material, and hydrothermally synthesizing the pretreated nanocomposite material. A method of manufacturing an electrode using the metal oxide-graphene nanocomposite is also provided. According to this invention, the metal oxide-graphene nanocomposite is synthesized from inexpensive graphite through one-step processing using only a surfactant, in place of conventional methods using oxidants, reductants and high-temperature heat, thereby lowering the number of processing steps and processing costs. Also, in the fabrication of the electrode, low electrical resistance characteristic of graphene is applied as it is, in place of the conventional use of active material, conductive material and binder, thereby exhibiting desired processing efficiency without the addition of the conductive material. Furthermore, highly pure graphene is prepared in a short time and various metal oxide active materials suitable for use in energy storage devices, for example, unary, binary, and multicomponent metal oxides, is formed through one-step processing, and necessary oxides having desired weight ratios {cobalt oxide (CoO), tricobalt tetraoxide (Co3O4), and cobalt hydroxide [Co(OH)2]} can be easily prepared, and thus very wide application ranges (secondary batteries, gas sensors, etc.) are expected.
Owner:AJOU UNIV IND ACADEMIC COOP FOUND

Preparation and application of alpha fetoprotein and carcino-embryonic antigen electrochemiluminescence sensor

The invention provides preparation and application of an alpha fetoprotein and carcino-embryonic antigen electrochemiluminescence sensor, and belongs to the technical fields of nano function material, clinical analysis, a bioseneor technology and electrochemistry. The characteristics that platinum nanoparticle @meso-porous silicon @ graphene nanocomposite (PtNPs@m-Si@GS) is strong in conductivity, good in stability, large in specific surface area, good in biocompatibility, strong in catalytic activity and the like are utilized in preparation; an alpha fetoprotein second antibody (anti-alpha fetoprotein (AFP)) and a carcino-embryonic antigen secondary antibody (anti-carcino-embryonicantigen (CEA)) are marked, so as to prepare the marked second antibodies Ru-PtNPs@M-Si@GS/anti-AFP and luminol-PtNPs@M-Si@GS/anti-CEA; and the sensitivity of the sensor is obviously improved. Compared with other single-channel electrode sensors, alpha fetoprotein and carcino-embryonic antigen can be simultaneously detected on a same electrode at one time; the detection efficiency is obviously improved; and the alpha fetoprotein and carcino-embryonic antigen electrochemiluminescence sensor has important scientific significance and application value on clinical early diagnosis of hepatic carcinoma.
Owner:UNIV OF JINAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products