Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1798 results about "Nano catalyst" patented technology

Nuclear shell nanometer catalyst packaged with noble metal nanometer grains and method thereof

The invention relates to a nuclear shell nanometer catalyst packaged with noble metal nanometer grains and a method thereof, which relate to a nanometer catalyzing material. The invention provides a nuclear shell nanometer catalyst packaged with noble metal nanometer grains, which has a size of the noble metal grains less than 10nm, and higher contact level among noble metal grains and stability of the catalyst, can be reused and is adaptive to different using conditions by multi-level derivation, and also provides a preparation method thereof. The catalyst has a formula of NMP@X, NMP is nanometer grains such as Pd, AgPd or Au, and the like, and X is spherical SiO2, hollow SnO2 ball or hollow C ball. The method comprises the following steps: synthesizing noble metal nanometer grains and adorning the surface to obtain noble metal-iron oxide nanometer heterojunction; coating a silicon dioxide to obtain noble metal iron heterojunction oxide @ silicon dioxide nuclear shell nanometer material, growing porous pores on the surface, removing the silicon dioxide, and removing iron oxide on the noble metal nanometer grains so that the noble metal nanometer grains are located in a nanometer capsule of the hollow porous pores to obtain the product.
Owner:XIAMEN UNIV

Novel graphite nanocatalysts

Novel catalysts comprised of graphitic nanostructures. The graphitic nanostructure catalysts are suitable for catalyzing reactions such as oxidation, hydrogenation, oxidative-hydrogenation, and dehydrogenation.
Owner:CATALYTIC MATERIALS

Nanoparticle coated nanostructured surfaces for detection, catalysis and device applications

InactiveUS20060141268A1Strong surface plasmon optical absorptionFine surfaceMaterial nanotechnologyNanomagnetismNano catalystNanostructured materials
A non-vacuum-based, non-collodial chemistry-based method of synthesizing metal nanoparticles and nanoparticle-nanostructured material composites obtained by that method. An embodiment of the method of this invention for fabricating a nanoparticle-nanostructured material composite and synthesizing nanoparticles includes preparing a nanostructured / nanotextured material, and, contacting the nanostructured / nanotextured material with a solution. Nanoparticles are synthesized on the nanostructured / nanotextured material as a result of the contact. The method of the present invention can be utilized to fabricate SPR and SERS substrates for sensing and detection. Additional systems based on this approach (e.g., surface plasmon resonance absorption and alloying sensors and nanocatalysts) are described.
Owner:PENN STATE RES FOUND

Preparation of nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst and application thereof in catalyzing o-chloronitrobenzene hydrogenation reaction

The invention provides a preparation method of a nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst and the application of the nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst in catalyzing an o-chloronitrobenzene hydrogenation reaction. According to the method, the novel nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst is prepared by synthesizing a ferronickel layered doubled hydroxide precursor with small grain size and high surface energy through a nucleation crystallization isolation method, evenly mixing the ferronickel layered doubled hydroxide precursor with a melamine and dicyandiamide mixed carbon material precursor, and finally self-reducing at high temperature. The nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst is efficiently applied to the reaction where halogenated aniline is generated through catalytic hydrogenation of a nitro-halogen compound, and the conversion rate of o-chloronitrobenzene and the selectivity of o-chloroaniline are respectively up to 95-100% and 98-100%. The structure of the novel nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst is unique and novel, the process is green and energy-saving, the structure of the catalyst is stable, and the catalyst has a broad application prospect.
Owner:BEIJING UNIV OF CHEM TECH

Membrane electrode for proton exchange membrane water electrolysis battery and preparation thereof

The invention discloses a proton exchange membrane water electrolyte battery membrane electrode and a process for preparation thereof, which belongs to the technical field of preparing hydrogen gas through electrolyzing water, wherein the proton exchange membrane water electrolyte battery membrane electrode comprises a polymer electrolyte membrane, an anode catalyst layer, a cathode catalyst layer, an anode diffusion layer, a cathode diffusion layer, a support layer and a flow field plate, wherein hydrophilic thin layer structures which are formed by catalyst are respectively brushed on both surfaces of the polymer electrolyte membrane. Anode catalyst is noble metal or metallic material, and the diffusion layer is carbon material or metallic material. A catalyst layer and the relative diffusion layer and the support layer are compacted in a titanium plate to prepare membrane electrode through utilizing external force under normal temperature. The invention lowers the load of catalyst, improves the operating factor of catalyst, avoids the deformation of membranes in the process of heat pressing, and is drawn supported from the catalytic and corrosion resistance property of an anti-corrosion diffusion layer with catalytic property, and the electrolytic property and the stability of a battery are improved. The invention has the advantages of simple technique, convenient operation and excellent repeatability.
Owner:SHANGHAI JIAO TONG UNIV

Nanocrater catalyst in metal nanoparticles and method for preparing the same

Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and / or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and / or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
Owner:KOREA ADVANCED INST OF SCI & TECH

Electrochemical Cell With A Catalytic Electrode And Process For Making The Electrode And The Cell

InactiveUS20080155813A1Easy and economical and safe mannerEliminate useMaterial nanotechnologyFuel and primary cellsNano catalystLiquid medium
A process for making a catalytic electrode containing a transition metal nano-catalyst without using spray or thermal decomposition, and a process for making an electrochemical cell with a catalytic electrode. The nano-catalyst is a particulate material that includes particles that are at least partially oxidized, preferably to include at least oxide shells, before mixing with an activated carbon and binder in a liquid medium to adhere particles of the nano-catalyst to internal and external surfaces of the particles of activated carbon. Oxidation of the nano-catalyst particles allows the mixing of the nano-catalyst, activated carbon and binder in air rather than an inert gas atmosphere and can avoid the use of potentially dangerous liquid media such as highly volatile alcohols.
Owner:EVEREADY BATTERY CO INC

PtNi alloy/graphene combined nanometer catalyst with hollow structure and preparation method thereof

A PtNi alloy / graphene combined nanometer catalyst with a hollow structure adopts the graphene as a carrier and loads the PtNi alloy nanometer particles of which the grain diameter is 10-50 nm on the surface of the graphene, wherein the PtNi alloy nanometer particles are hollow spherical structures. The method for preparing the combined catalyst comprises the following steps: dispersing the graphene oxide in water liquor to which surfactant is added through ultrasound; uniformly mixing with soluble nickel salt (II); adding the reducing agent in inert gas atmosphere; adding soluble platinum salt (IV); stirring at 0-50 DEG C to execute the reduction reaction; centrifuging, washing and drying the reaction product to obtain the PtNi alloy / graphene combined nanometer catalyst with the hollow structure. The PtNi alloy / graphene combined nanometer catalyst with the hollow structure in the invention has good electro-catalytic property on electrochemical oxidation of methyl alcohol, and can be widely applied in methyl alcohol fuel cells.
Owner:NANJING NORMAL UNIVERSITY

Process for dispersing nanocatalysts into petroleum-bearing formations

Embodiments of the invention provide methods for recovering petroleum products from a formation by distributing nanocatalysts into the formation and heating the heavy crude oil therein. In one embodiment, a method is provided which includes flowing a catalytic material containing the nanocatalyst into the formation containing the heavy crude oil, exposing the heavy crude oil and the catalytic material to a reducing agent (e.g., H2), positioning a steam generator within the formation, generating and releasing steam from the steam generator to heat the heavy crude oil containing the catalytic material, forming lighter oil products within the formation, and extracting the lighter oil products from the formation. In another embodiment, a method is provided which includes exposing the heavy crude oil and the catalytic material to an oxidizing agent (e.g., O2). The nanocatalyst may contain cobalt, iron, nickel, molybdenum, chromium, tungsten, titanium, oxides thereof, alloys thereof, derivatives thereof, or combinations thereof.
Owner:WORLD ENERGY SYST

Method for preparing carbon supported Au-Pt or Au-Pd catalyst

The invention relates to a method for preparing a carbon supported Au-Pt or Au-Pd catalyst by modifying Au-Pt or Au-Pd bimetal nanoparticles with microwaves, belonging to the technical field of catalytic materials. High pressure and high temperature generated by microwaves in a high-pressure reaction tank are utilized to treat an Au-Pt or Au-Pd composite nano colloid synthesized by a chemical coreduction method so as to induce the modification of the Au-Pt or Au-Pd bimetal nanoparticles; and the microwave-modified bimetal nanoparticles are deposited on the surface of the carbon support, thereby obtaining the carbon supported Au-Pt or Au-Pd catalyst with high activity. The carbon supported Au-Pt or Au-Pd catalyst has high electrocatalytic activity; the supporting rate of the Au-Pt or Au-Pd bimetal is high; the supporting amount of the Au-Pt or Au-Pd is controllable; and the method can be used for preparing the carbon supported Au-Pt or Au-Pd nano catalyst of which the mass ratio of Au-Pt or Au-Pd to carbon is 1-20%. The method provided by the invention has the advantages of low cost, simple technique and low facility request, and has wide industrial application prospects.
Owner:KUNMING UNIV OF SCI & TECH

Thermal grease composition

The invention relates to the field of thermal interface materials, and more particularly, provides a thermal grease composition, which contains the following components: (A) 100.0 parts by weight of thermally conductive filler, (B) 0.1 to 8.0 parts by weight of active solid silicone resin, (C) 0.1 to 15.0 parts by weight of active silicone oil, (D) 0.1 to 9.0 parts by weight of macromolecular polysiloxane, (E) 0.1 to 3.0 parts by weight of nano catalyst, and (F) 0.1 to 3.0 parts by weight of additive. The thermal grease composition provided by the invention has good thermal conductivity and using weatherability, can effectively solve the technical difficulty that the thermal grease composition in the prior art is pulverized and crushed and the thermal conductivity is therefore reduced as the service time increases. The manufacturing process has simple, convenient and easy steps and the thermal grease composition is suitable for large-scale match production.
Owner:SHENZHEN EUBO NEW MATERIAL TECH

Method for reducing NOx during combustion of coal in a burner

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent. The dispersing agent includes at least one functional group such as a hydroxyl, a carboxyl, a carbonyl, an amine, an amide, a nitrile, a nitrogen having a free lone pair of electrons, an amino acid, a thiol, a sulfonic acid, a sulfonyl halide, and an. acyl halide. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.
Owner:HEADWATERS TECH INNOVATION GRP

Magnetic Fe3O4/SiO2/TiO2/quantum dot compounded nanometer photocatalyst and preparation method and application thereof

The invention belongs to the technical field of treatment and application of nanometer materials and industrial and agricultural wastewater, and provides a magnetic Fe3O4 / SiO2 / TiO2 / quantum dot compounded nanometer photocatalyst and a preparation method and application thereof. The preparation method comprises the following steps of: synthesizing an Fe3O4 magnetic nucleus by a coprecipitation method; preparing an SiO2 protective layer by virtue of hydrolysis reaction and polycondensation reaction of TEOS (Tetraethyl Orthosilicate); then preparing a TiO2 layer on the surface of the SiO2 protective layer by a sol-gel method; and finally modifying Fe3O4 / SiO2 / TiO2 nanoparticles by CdS and CdSe quantum dots. The obtained magnetic Fe3O4 / SiO2 / TiO2 / quantum dot compounded nanometer photocatalyst has very good visible-light photocatalytic capability, can be conveniently and fast recovered and reused by an external magnetic field, and can be used for removing organic pollutants of azo dyes contained in the industrial wastewater.
Owner:HUBEI UNIV

Core-Shell Nanocatalyst For High Temperature Reactions

The present invention provides a core-shell nanoparticle that includes a metal-oxide shell and a nanoparticle. Pores extend from an outer surface to an inner surface of the shell. The inner surface of the shell forms a void, which is filled by the nanoparticle. The pores allow gas to transfer from outside the shell to a surface of the nanoparticle. The present invention also provides a method of making a core-shell nanoparticle includes forming a metal-oxide shell on a colloidal nanoparticle, which forms a precursor core-shell nanoparticle. A capping agent is removed from the precursor core-shell nanoparticle, which produces the core-shell nanoparticle. The present invention also provides a method of using a nanocatalyst of the present invention includes providing the nanocatalyst, which is the core-shell nanoparticle. Reactants are introduced in a vicinity of the nanocatalyst, which produces a reaction that is facilitated or enhanced by the nanocatalyst.
Owner:RGT UNIV OF CALIFORNIA

Preparation method of metal or metal oxide particle-containing CeO2 fiber catalyst

The invention discloses a preparation method of a metal or metal oxide particle-containing CeO2 fiber catalyst, and belongs to the field of preparation of nanocatalysts. The novel fiber-based supported catalyst is obtained by adopting a cocatalyst CeO2 fiber as a supporter to support a main catalyst metal or metal oxide nanoparticle. The method comprises the following steps: 1, respectively dissolving a CeO2 precusor, a polymer and a metal or metal salt in a solvent, magnetically stirring, and mixing and stirring to obtain a spinning precursor solution; 2, carrying out an electrostatic spinning technology to make metal or metal CeO2 / polymer supported composite precursor fibers; and 3, carrying out high temperature calcining and hydrogen reduction to obtain the metal or metal oxide nanoparticle / CeO2 fiber supported catalyst. The method is simple and easy, and the metal or metal oxide particle has good dispersibility and large specific surface area; and the catalyst high the characteristics of high catalysis activity and easy recovery, and has wide application prospect in the future catalysis industry.
Owner:BEIJING UNIV OF CHEM TECH

Method for producing H12MDA through hydrogenation reaction

This invention discloses a method for preparing 4, 4'-diamino dicyclohexylmethane (H12MDA) from 4, 4'-diamino diphenylmethane (MDA) via hydrogenation catalyzed by supported nanoscale Ru catalyst. The method comprises: performing stereoselective hydrogenation on MDA at 100-180 deg.C and 4-10 MPa in an intermittent autoclave for 1-9 h to obtain H12MDA. The MDA conversion rate is near 100%, the H12MDA weight yield is near 100%, and the trans-H12MDA content is below 25%. After the supported nanoscale Ru catalyst is continuously reused for above 30 times without supplementation, the MDA conversion rate is still near 100%, and the trans-H12MDA content is below 27%.
Owner:WANHUA CHEMICAL (NINGBO) CO LTD

Nanometer photocatalyst material supported embedded composite film and preparation method and application thereof

The invention discloses a method for preparing a nanometer photocatalyst material supported embedded composite film. The method comprises the following steps: dissolving an organic polymer base film material, a pore-forming agent and a nanometer catalyst in a solvent, stirring and standing to prepare a casting film solution; dispersing the nanometer photocatalyst in the solvent to obtain dispersion liquid, spreading the dispersion liquid on a plate to prepare a spreading solution, and drying the spreading solution to obtain a spreading film; and covering the spreading film with the casting film solution, scraping a liquid film by utilizing a film scraper, immersing the scraped liquid film in a constant temperature gel bath, and curing the liquid film to prepare the nanometer photocatalyst material supported embedded composite film. The invention also provides the nanometer photocatalyst material supported embedded composite film and application thereof. According to the method, a nanometer photocatalyst coating is uniformly, effectively, stably and firmly supported on the surface of the embedded composite film. Moreover, according to the composite film, the removal rate of pollutants is effectively improved, and film pollution is reduced.
Owner:SHANGHAI JIAO TONG UNIV

Method for utilizing heterogeneous catalyst to efficiently activate persulfate so as to treat organic wastewater

The invention discloses a method for utilizing a heterogeneous catalyst to efficiently activate persulfate so as to treat organic wastewater, belonging to the technical field of water pollution control. According to the method, nano Fe0, nano FeOxHy (y=2x-3 or 3y=6x-8) and FeOxHy@Fe0 (FeOxHy@Fe0, y=2x-3 or 3y=6x-8) nano composite materials are used as a heterogeneous catalyst, so that persulfate is activated to produce sulfate free radicals having strong oxidizing property, thereby removing nondegradable organic substances in wastewater. Besides, due to the characteristics of high specific area, high catalytic activity and the like, the solid-phase nano catalyst can efficiently and persistently activate the persulfate to be subjected to heterogeneous activation. The method is applicable to treatment of various organic wastewater, has the advantages of high efficiency, favorable persistence, convenient operation process and environment friendliness, and can efficiently remove toxic and harmful pollutants in the wastewater in a wider pH value range, thus providing broad prospects for treatment of toxic, harmful and nonbiodegradable organic wastewater.
Owner:SOUTH CHINA UNIV OF TECH

A functionalized graphene supported nickel palladium bi-metal nanometer catalyst, and preparation and applications of the catalyst

A functionalized graphene supported nickel palladium bi-metal nanometer catalyst, and preparation and applications of the catalyst are provided. A preparation method does not include a high-temperature hydrothermal reaction or a step of adding other catalysts, and only includes adding nickel chloride (NiCl2) and sodium tetrachloropalladate (Na2PdCl4) which are metal precursors into a mixed solution of 3-aminopropyl-3-ethoxysilane (APTS) and graphite oxide (GO), rapidly reducing Ni<2+> and Pd<2+> ions into NiPd metal particles by utilizing sodium borohydride (NaBH4) and allowing the metal particles to grow on a -NH2-functionalized graphene substrate (NiPd/N-FG). The prepared nickel palladium metal nanometer particles are uniformly distributed on the substrate and have a very small particle size (1.2-2.4 nm). The synthesized Ni<0.4>Pd<0.6>/N-FG catalyst still has extremely good catalytic performance when the content of the non-noble metal Ni accounts for 40% of the total metal content. The method is simple, effective and low in cost, overcomes problems such as long synthesis time, high synthesis temperatures, and high nanometer particle sizes, and promotes practical application of formic acid as a hydrogen storage material in fuel cells and vehicle-mounted mobile hydrogen source materials.
Owner:JILIN UNIV

Preparation method of polyaniline/graphene controllable load platinum nanoparticles

A preparation method of polyaniline / graphene controllable load platinum nanoparticles comprises the following steps of: (1) preparing reduced grapheme; (2) synthesizing a polyaniline / reduced grapheme (PANI / rGNS) nanocomposite by a liquid-liquid interfacial method; (3) preparing a platinum loaded polyaniline / graphene (Pt / PANI / rGNS) nanocatalyst. The invention has the following advantages: by the adoption of the liquid-liquid interfacial polymerization method, the uniformly dispersed PANI / rGNS nanocomposite is synthesized, thus effectively preventing the agglomeration of the composite material,making for uniformly and controllably loading PtNPs on the surface of PANI / rGNS, solving the technical difficulty of metal particle agglomeration and realizing uniform and efficient loading of PtNPs;an electrochemical test result shows that the catalyst has excellent electrocatalytic activity for methanol oxidation and oxygen reduction and ultrasensitive detection of hydrogen peroxide (H2O2) andglucose can be also realized.
Owner:NANCHANG UNIV

Method for preparing graphene-loaded platinum nano catalyst

The invention discloses a method for preparing a graphene-loaded platinum nano catalyst, which comprises the following steps of: (1) preparing graphene (GNS); (2) preparing polydiallyl dimethyl ammonium chloride (PDDA) functional graphene; and (3) preparing the graphene-loaded platinum nano (Pt / GNS) catalyst. The method has the advantages of uniformly adsorbing and distributing PtCl6<2-> with negative charge on the surface of the GNS through electrostatic adhesion by using positive charge uniformly distributed on the surface of the PDDA-modified GNS, solving the technical problem that metallic particles per se aggregate, realizing higher loading rate of PtNPs and having uniform grain size and controllable size.
Owner:NANCHANG UNIV

Noble metal nanocatalyst loaded on dendritic macromolecule functionalized graphene and preparation method thereof

The invention relates to a noble metal nanocatalyst loaded on a dendritic macromolecule functionalized graphene and a preparation method thereof. The nanocatalyst is composed of graphene, silane coupling agents, dendritic macromolecules and noble metal nanoclusters, wherein the dendritic macromolecules are amino-terminated polyamide-amine (PAMAM) dendritic macromolecules, and the noble metal nanoclusters comprise palladium, platinum, gold, silver, ruthenium, iridium, osmium and related alloys. Aminos are introduced onto the surfaces of exfoliated graphene by the silane coupling agents, then different generations of the dendritic macromolecules are covalently introduced, and further the nanoclusters of noble metals and the related alloys are loaded by using the above-obtained materials as templates. The loaded noble metal nanocatalyst is not easy to agglomerate or to fall off during catalytic processes, and has high catalytic activity. The loaded noble metal nanoclusters has the characteristics of tunable size and controllable shape, and the structure and composition of the noble metal alloys can be controlled accurately. The method is simple in process and short in period, and can easily realize industrial production.
Owner:HENAN UNIV OF SCI & TECH

Method of preparing nano-sized catalyst on carbon support

The present invention provides a method of synthesizing a nano-sized transition metal catalyst on a carbon support, including dissolving a stabilizer in ethanol thus preparing a mixture solution, adding a support to the mixture solution thus preparing a dispersion solution, dissolving a transition metal precursor in ethanol thus preparing a precursor solution, mixing the precursor solution with the dispersion solution with stirring, and then performing reduction, thus preparing the nano-sized transition metal catalyst. This method enables the synthesis of transition metal nanoparticles supported on carbon powder having a narrow particle size distribution and a wide degree of dispersion through a simple process, and is thus usefully applied to the formation of an electrode material or the like of a fuel cell.
Owner:HYUNDAI MOTOR CO LTD +1

Nitrogen-doped hollow carbon ball loaded palladium-based catalyst and preparation method thereof, and alcohol fuel cell applying same

The invention relates to a preparation method of a nitrogen-doped hollow carbon ball loaded palladium-based catalyst, which comprises the following steps of: dispersing o-phenylenediamine in a solvent for being stirred at a low temperature, adding an initiator for reacting for 12-24h, then extracting and filtering, and drying in vacuum to obtain a poly(o-phenylenediamine) hollow ball; pyrolyzing an o-phenylenediamine polymer at a high temperature for 2-6h under the protection of an inert gas to obtain a nitrogen-doped hollow carbon ball; and dispersing the nitrogen-doped hollow carbon ball into water, adding a chloropalladic acid solution for ultrasonic treatment, adding a reducing agent for ultrasonic treatment, extracting and filtering after the reaction is completed, and drying in vacuum to obtain the nitrogen-doped hollow carbon ball loaded palladium-based catalyst. The nitrogen-doped hollow carbon ball loaded palladium-based catalyst prepared by adopting the preparation method has the nitrogen content of 10.4-22.4wt%, has the advantages of excellent oxidization reaction catalysis property to alcohol, stable performance, low preparation cost and simple preparation process, and is a novel high-performance catalyst for a low-temperature direct alcohol fuel cell anode.
Owner:NANJING COMM INST OF TECH

Metal Nano Catalyst, Method for Preparing the Same and Method for Controlling the Growth Types of Carbon Nanotubes Using the Same

The present invention provides a metal nano catalyst, a method for preparing the same and a method for controlling the growth types of carbon nanotubes using the same. The metal nano catalyst can be prepared by burning an aqueous metal catalyst derivative comprising Co, Fe, Ni or a combination thereof in the presence of a supporting body precursor.
Owner:CHEIL IND INC

Nanometer catalyst with adsorbing and virus killing activity

A nanocatalyst for adsorbing and deactivating virus (influenza virus, adenovirus, etc) is composed of the carrier chosen from natural zeolite, synthetic molecular sieve, porous silica gel, aluminium oxide and titanium oxide, and the active component chosen from the nanoparticles of Ag, Cu, Zn, Au and Pt. Its advantage is high effect.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Artificial hollow micro-nano motor and preparation method thereof

The invention provides an artificial hollow micro-nano motor and a preparation method thereof, relating to artificial motors and preparation methods thereof and solving the problem that the existing solid spherical motor, tubular motor and linear motor are poor in loading performance. The artificial hollow micro-nano motor is made from a polyelectrolyte double-layer skeleton and a catalyst or is made from a cationic polyelectrolyte skeleton and the catalyst; and the preparation method of the artificial hollow micro-nano motor comprises the following steps of: (1) preparing micro-nano catalyst particles; (2) synthesizing a core substrate; (3) synthesizing an artificial hollow micro-nano motor skeleton; and (4) removing the core substrate by using a template solvent so as to obtain the artificial hollow micro-nano motor. The preparation method has the advantages of simplicity and feasibility, stable process, good repeatability and convenience in mass production, and the prepared artificial hollow micro-nano motor is good in transportability and loading function, has a wide application prospect in a plurality of aspects, such as drug release control, blood purification, clinical diagnosis, and is simple in operation. The artificial hollow micro-nano motor prepared by the preparation method provided by the invention is applicable to the medical field.
Owner:HARBIN INST OF TECH

Ozonization water treatment method using manganese dioxide one-dimensional nano material as catalyst

The invention relates to an ozonization water treatment method using a manganese dioxide one-dimensional nano material as a catalyst. The invention provides a preparation method and a using method of the nano-catalyst, which belong to the technical field of water treatment and environmental catalysis. Manganese dioxide nano rods are obtained by a simple and convenient hydrothermal method and the manganese dioxide nano rods serving as the catalyst are added into a phenol wastewater-containing ozonization water treatment system to contribute to the degradation of phenol organic pollutants, so that a novel ozonization water treatment method is provided on the basis. The obtained manganese dioxide one-dimensional nano material has the characteristics of small dimension, high dispersibility, high separability and wide application prospect in ozonization water treatment.
Owner:JIANGNAN UNIV

Nitrogen-doped hierarchical pore carbon and preparation method and application thereof

The invention discloses a preparation method of nitrogen-doped hierarchical pore carbon. The preparation method includes: using biomass as a raw material, and mixing the biomass with a composite activator; heating for calcining, mixing a calcining product with deionized water, standing for precipitation, and filtering to obtain precipitate; performing after-treatment to obtain the nitrogen-doped hierarchical pore carbon, wherein the composite activator is sodium hydrogen carbonate / nitrogen-containing compound, a mass ratio of sodium hydrogen carbonate to the nitrogen-containing compound is 0.25-4:1, the nitrogen-containing compound comprises at least one of ammonium oxalate, ammonium hydrogen carbonate, ammonium chloride and ammonium nitrate, and a mass ratio of the biomass to the composite activator is 1:2-16. The composite activator is utilized to activate the biomass to obtain a functionalized nitrogen-doped hierarchical pore carbon material, the preparation method is simple and easy to operate, the biomass existing in nature can be utilized directly, the obtained carbon material has rich hierarchical pore structure and can be used as a catalyst carrier to prepare high-performance nano catalysts, and utilization value of the biomass is increased greatly.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products