Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1265results about How to "Good monodispersity" patented technology

Inorganic nanowires

An inorganic nanowire having an organic scaffold substantially removed from the inorganic nanowire, the inorganic nanowire consisting essentially of fused inorganic nanoparticles substantially free of the organic scaffold, and methods of making same. For example, a virus-based scaffold for the synthesis of single crystal ZnS, CdS and free-standing L10 CoPt and FePt nanowires can be used, with the means of modifying substrate specificity through standard biological methods. Peptides can be selected through an evolutionary screening process that exhibit control of composition, size, and phase during nanoparticle nucleation have been expressed on the highly ordered filamentous capsid of the M13 bacteriophage. The incorporation of specific, nucleating peptides into the generic scaffold of the M13 coat structure can provide a viable template for the directed synthesis of a variety of materials including semiconducting and magnetic materials. Removal of the viral template via annealing can promote oriented aggregation-based crystal growth, forming individual crystalline nanowires. The unique ability to interchange substrate specific peptides into the linear self-assembled filamentous construct of the M13 virus introduces a material tunability not seen in previous synthetic routes. Therefore, this system provides a genetic tool kit for growing and organizing nanowires from various materials including semiconducting and magnetic materials.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST +1

Magnetic fluorescent composite nanoparticle, as well as preparation and use thereof

The invention discloses a magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2 and a preparation method thereof. The method for preparing the magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2 comprises the steps of: firstly preparing hydrophobic monodisperse Fe3O4 nano-particles by adopting a chemical oil-phase high-temperature method, and modifying the surfaces of the hydrophobic Fe3O4 nano-particles to ensure that the hydrophobic Fe3O4 nano-particles are dispersed in a water phase; preparing luminescent CdTe quantum dots of which the surfaces are provided with carboxyl groups, and precipitating the luminescent CdTe quantum dots on the surfaces of the magnetic Fe3O4 nano-particles through the co-precipitation; then utilizing ligand exchange to modify a silane coupling agent on the surfaces of the luminescent CdTe quantum dots; and finally forming an outermost SiO2 coating layer through silane or silicon ester hydrolysis. The diameter of the magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2 is between 30 and 50nm; the magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2has double functions of magnetism and fluorescence at the same time, has strong and durable fluorescence intensity after labeling rat bone marrow-derived mesenchymal stem cells, and apparently reduces cellular magnetic resonance signals. The particle has broad application prospect in the fields such as biological labeling, bioseparation and the like.
Owner:SUN YAT SEN UNIV

Preparation method for composite cathode material of lithium ion battery

The invention discloses a preparation method for a composite cathode material of a lithium ion battery by means of spray drying pyrolysis treatment. The preparation method includes the steps: dissolving a first type of binder organic carbon source into solvent of a proper quantity, adding a silicon source, a second type of binder and a dispersing agent, dispersing uniformly, adding graphite, dispersing for a certain time, subjecting uniformly dispersed suspension to spray drying, and using the first type of binder organic carbon source to bond the silicon source, the graphite and the second type of binder particles into spherical or spherical-like forms to obtain a composite precursor; and transferring the precursor into a shielding atmosphere for sintering, heating the second type of binder to a certain temperature to be melted into a liquid crystal state, bonding the particle silicon source and the graphite into cores, subjecting the organic carbon source to pyrolysis at the high temperature to form a coating, and furnace cooling to obtain the carbon-silicon composite cathode material of the lithium ion battery. The preparation method is simple, easy in implementation and high in practicality. The carbon-silicon composite prepared by the method has the advantages of high reversible capacity, designable capacity, high circulating performance and high-current discharging performance, high tap density and the like.
Owner:CENT SOUTH UNIV

Mono-dispersed spherical mesoporous silicon dioxide nanomaterial and preparation method thereof

The invention relates to a mono-dispersed spherical mesoporous silicon dioxide nanomaterial, which is characterized in that: the nanomaterial has a spherical structure of which the particle diameter is 80-200 nanometers; the relative standard deviation of the particle diameter is not more than 8 percent; the specific surface area of the material is 1,057-1,379 m<2>/g; the pore volume is 0.74-0.89 cm<3>/g; the mesoporous pore diameter is 2.4-2.6 nanometers; and the nanometer material has a pore canal structure formed radially from the center of a sphere to an outer surface. The mono-dispersed spherical mesoporous silicon dioxide nanomaterial is prepared by hydrolyzing and condensing by taking a cationic surfactant as a template, tetraethyl orthosilicate as a silicon source and alcohol as a cosolvent under alkaline condition. The method has the advantages of simple equipment, easiness of operation, short preparation period, high repeatability, high yield, low cost and environment friendliness. The prepared silicon dioxide material is of spherical nanoparticles which have controllable particle diameters, uniform particle diameter distribution, high mono-dispersity, narrow pore diameter distribution and ordered mesoporous pore canal structures.
Owner:OCEAN UNIV OF CHINA

Hollow porous spherical platinum-silver alloy nano-material and preparation method for same

The invention relates to a hollow porous spherical platinum-silver alloy nano-material and a preparation method for the same. The nano-material is of a spherical structure with a porous shell and an internal cavity, the diameter of the spherical structure ranges from 5 nanometers to 500 nanometers, the inner diameter of the cavity ranges from 1 nanometer to 400 nanometers, the thickness of a porewall ranges from 1 nanometer to 50 nanometers, and the pore diameter ranges from 1 nanometer to 20 nanometers. Polyatomic alcohol, inorganic silver salt precursor, inorganic platinum salt precursor and polyvinylpyrrolidone are used as reaction raw materials, inorganic salt containing halogen ions and copper-containing inorganic salt are used as auxiliaries, and the hollow porous spherical platinum-silver alloy nano-material is synthesized by means of reaction. The preparation method is simple in process, convenient in operation, fine in repeatability and low in cost, and the obtained hollow porous spherical platinum-silver alloy nano-material can be used for the fields of chemical and electrochemical catalysis, chemical sensors, biomolecular sensors, information storage, fuel cells, solarcells and the like. Particularly, the hollow porous structure of the nano-material can be effectively applied to slow drug release and target-oriented drug delivery treatment.
Owner:SHANDONG UNIV

Method for preparing monodisperse polystyrene microsphere with controllable grain diameter

The invention belongs to the technology field of nanometer materials preparation, particularly relates to a preparation method of monodisperse polystyrene microspheres capable of controlling the particle size of the polystyrene microspheres within a certain range by changing the use amount of a stabilizer. The invention prepares polystyrene microspheres with simply purified styrene as a monomer, potassium persulfate as an initiator, water as a reaction medium and polyvinylpyrrolidone as a stabilizer by using soap-free emulsion polymerization. The preparation method uses electromagnetic stirring instead of electric stirring; and has the advantages of relatively low requirements for the uniformity of stirring speed, no need of surfactant, simple process, and low cost. The obtained polystyrene microspheres have good monodispersity, and the particle size thereof can be controlled within the range of 250-1,400nm by changing the use amount of the stabilizer. The monodispersed polystyrene microspheres have important application value as a module or template in construction of photonic crystals, inorganic / organic nanometer composite materials and hollow micrometer / nanometer spheres.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Sandwich-like hollow structure metallic oxide @ noble metal nanoparticles @ metallic oxide catalyst as well as preparation method and use thereof

The invention discloses a sandwich-like hollow structure metallic oxide @ noble metal nanoparticles @ metallic oxide catalyst as well as a preparation method and the use of the sandwich-like hollow structure metallic oxide @ noble metal nanoparticle @ metallic oxide catalyst. The method combines a sol-gel method and a hydrothermal method, and comprises the steps of preparing a spherical SO2 template with uniform size by the sol-gel method; then, coating a metallic oxide shell layer on the surface of the spherical SO2 template, adsorbing noble metal nanoparticles to the surface of the shell layer by electrostatic action, and further coating another metallic oxide shell layer on the surface of the spherical SO2 template by the sol-gel method; finally, carrying out crystallization on the amorphous metallic oxide shell layers and removing the SO2 template by adopting the hydrothermal method to obtain the sandwich-like hollow structure catalyst. The existing 'high-temperature calcination and alkali etching' method is replaced by the hydrothermal method; the method has the characteristics of being simple in operation, high in yield and good in monodispersity; the prepared sandwich-like hollow structure material is excellent in activity and stability in a catalytic reaction.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Monodispersed vaterite type calcium carbonate microsphere and preparation method thereof

The invention relates to a preparation method of a monodispersed vaterite type calcium carbonate microsphere, which comprises the following steps of: (1) preparing a calcium salt aqueous solution with the concentration of 30-150mmol/L, and then, adjusting the pH value of the calcium salt aqueous solution to 8.5-10; (2) preparing a carbonate or hydrocarbonate aqueous solution with the concentration of 30-150mmol/L, and then, adjusting the pH value of the carbonate or hydrocarbonate aqueous solution to 8.5-10; (3) preparing a functional hyperbranched polyglycerol aqueous solution with the concentration of 20-400mg/L, and then, adjusting the pH value of the functional hyperbranched polyglycerol aqueous solution to 8.5-10; (4) mixing and uniformly stirring the carbonate or hydrocarbonate aqueous solution, the calcium salt aqueous solution and the functional hyperbranched polyglycerol aqueous solution at the temperature of 10-35 DEG C, and aging for 1-12h; and (5) centrifuging or filtering the mixed solution, cleaning a sediment, and drying to obtain the monodispersed vaterite type calcium carbonate microsphere. The monodispersed vaterite type calcium carbonate microsphere prepared by using the preparation method provided by the invention has the advantages of uniform particle size, stable crystal form and industrial application value.
Owner:NANJING UNIVERSTIY SUZHOU HIGH TECH INST +1

Noble metal nanocatalyst loaded on dendritic macromolecule functionalized graphene and preparation method thereof

The invention relates to a noble metal nanocatalyst loaded on a dendritic macromolecule functionalized graphene and a preparation method thereof. The nanocatalyst is composed of graphene, silane coupling agents, dendritic macromolecules and noble metal nanoclusters, wherein the dendritic macromolecules are amino-terminated polyamide-amine (PAMAM) dendritic macromolecules, and the noble metal nanoclusters comprise palladium, platinum, gold, silver, ruthenium, iridium, osmium and related alloys. Aminos are introduced onto the surfaces of exfoliated graphene by the silane coupling agents, then different generations of the dendritic macromolecules are covalently introduced, and further the nanoclusters of noble metals and the related alloys are loaded by using the above-obtained materials as templates. The loaded noble metal nanocatalyst is not easy to agglomerate or to fall off during catalytic processes, and has high catalytic activity. The loaded noble metal nanoclusters has the characteristics of tunable size and controllable shape, and the structure and composition of the noble metal alloys can be controlled accurately. The method is simple in process and short in period, and can easily realize industrial production.
Owner:HENAN UNIV OF SCI & TECH

Mesoporous nano silicon ball compound targeting drug delivery system as well as preparation method and application thereof

The invention relates to a mesoporous nano silicon ball compound targeting drug delivery system as well as a preparation method and application thereof. The preparation method of the mesoporous nano silicon ball compound targeting drug delivery system comprises the following steps: 1) preparing amino-functionalized drug loading mesoporous silicon dioxide microspheres; 2) preparing hyaluronic acid-hydrosulphonyl polypeptide-adriamycin (HA-RGD-DOX); 3) preparing mesoporous microsphere-hyaluronic acid-hydrosulphonyl polypeptide-adriamycin--paclitaxel (MSNs-HA-RGD-DOX_PTX); and 4) preparing fluorescent marker modified mesoporous microsphere-hyaluronic acid-hydrosulphonyl polypeptide-adriamycin--paclitaxel compound (MSNs-HA-RGD-DOX-PTX). The mesoporous nano silicon ball compound targeting drug delivery system has the beneficial effects that firstly multi-targeting synergistic drug delivery is realized, multiple tumour cells and tissues can be killed, and reversal drug resistance is good; secondly, blood stability is excellent; thirdly, invisibility, drug release degree and controlled release properties are good; fourthly, in vivo tracing function is good; and fifthly, the mesoporous nano silicon ball compound targeting drug delivery system has good general applicability.
Owner:WUHAN UNIV OF TECH

Method for reducing and preparing functionalized nano-silver based on polyphenol

The invention discloses a novel method for reducing and preparing functionalized nano-silver based on polyphenol. The preparation process is as follows: 1), stock solutions of all reaction liquids are prepared, and the stock solutions comprise a silver-bearing predecessor stock solution, a polyphenol compound stock solution and an alkaline stock solution; 2), a polyphenol compound solution is prepared: a certain amount of the polyphenol compound stock solution is taken and added into ultrapure water, and the stock solution and the ultrapure water are mixed uniformly; 3), the pH value and the temperature of the polyphenol compound solution are adjusted: a proper amount of the alkaline stock solution is taken and added into the polyphenol compound solution prepared in the step 2), the pH value of the mixed solution is adjusted, the mixed solution is placed and kept out of the sun, and the temperature of the mixed solution is adjusted; and 4), a nano-silver solution is generated: a certain amount of the silver-bearing predecessor stock solution is added into the mixed solution with adjusted pH value and temperature in the step 3) and is kept out of the sun, and reaction is performed for a certain time. The operation method is simple, the synthesis speed is high, the cost is low, the biocompatibility is high, the method is pollution-free, the sizes of the synthesized nano-silver particles are small, the monodispersity is good, and the nano-silver also has the performance of a polyphenol compound.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products