Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1030 results about "Dispersed media" patented technology

A dispersed medium consists of two media that do not mix. More specifically, it contains discrete elements of one medium which are dispersed in a continuous second medium. The two media can be of very different nature. In particular, they can be a gas, a liquid or a solid.

Hydrophilic nano zinc based composite coating

The invention belongs to the technical field of chemical engineering coatings and particularly relates to a hydrophilic nano zinc based composite coating used for preventing corrosion on the surfaces of the metal parts. The coating comprises an emulsifier, a dispersant, an antifoaming agent, scaly metallic powder, nano oxides, a silane coupler, an alcohol-type solvent, a high-molecule organic material, a thickener and 30.0 to 60.0 percent of water serving as a disperse medium. The coating can be coated by spraying, brushing, soaking and soaking-centrifugal coating and other methods, and the coating can be formed by being roasted at a temperature of about 200 DEG C for 20 minutes. Neutral salt spray corrosion resistant tests show that the neutral salt spray corrosion resistant time is more than 800h, the binding force is proved to be above level 4 (by an adhesive band test). The coating has the advantages of environmental pollution prevention, excellent metallic corrosion resistant property, economy and practicability and convenient use; and moreover, the coating can be widely used for the corrosion resistant treatment of the surface of metal parts made of iron, aluminum, copper and magnesium alloy and the like, particularly the corrosion resistant treatment of metal parts with complex geometric shapes.
Owner:YUNNAN GREAT IND DEV

Transparent Inorganic Oxide Dispersion and Iorganic Oxide Particle-Containing Resin Composition, Composition for Sealing Light Emitting Element and Light Emitting element, Hard Coat Film and Optical Functional Film and Optical Component, and Method for Producing Inorganic Oxide Pariticle-Containing Resin

The present invention provides a transparent inorganic oxide dispersion which makes it possible to improve the refractive index and mechanical characteristics and to maintain transparency by modifying the surface of inorganic oxide particles with a surface modifier having one or more reactive functional groups; and an inorganic oxide particle-containing resin composition in which the transparent inorganic oxide dispersion and a resin are compositely integrated by the polymerization reaction, a composition for sealing a light emitting element, a light emitting element, and a method for producing an inorganic oxide particle-containing resin composition; and a hard coat film which has high transparency and makes it possible to improve a refractive index and tenacity, an optical functional film, an optical lens and an optical component. The transparent inorganic oxide dispersion of the present invention comprises inorganic oxide particles which have a surface modified with a surface modifier having one or more reactive functional groups and have a disperse particle diameter of 1 nm or more and 20 nm or less, and a disperse medium, wherein the surface modifier is one or more kinds selected from the group consisting of a silane coupling agent, a modified silicone, and a surfactant.
Owner:SUMITOMO OSAKA CEMENT CO LTD

Highly-transparent ultraviolet-resistant energy-saving film and preparation method thereof

The invention relates to a highly-transparent ultraviolet-resistant energy-saving film and a preparation method thereof, belonging to the field of composite films synthesized by compounding polymer and inorganic nano-particles and aiming at overcoming the defects that the prior film has low visible light transmission and high production cost. The highly-transparent ultraviolet-resistant energy-saving film comprises the following components by the weight percent: 50-99.8 of organic polymer, 0.2-50 of metal-oxide nano-particles and 0-39.9 of polymer auxiliary agent. The highly-transparent ultraviolet-resistant energy-saving film is prepared by a solution mixing method or a solution-melting mixing method; with the solution mixing method, the organic polymer and the metal-oxide nano-particles are dispersed in dispersing medium to prepare film preparing stock solution, and the film preparing stock solution is used for preparing the energy-saving film on a substrate; with the solution-melting mixing method, the mixture of the organic polymer and the metal-oxide nano-particles is dried to prepare master batch, and the master bath is mixed with the organic polymer and the polymer auxiliary agent to prepare the energy-saving film. The highly-transparent ultraviolet-resistant energy-saving film has high visible light transmission, good ultraviolet resistance and energy-saving effect, simple preparation process and low cost, thereby being suitable for industrial production.
Owner:BEIJING UNIV OF CHEM TECH +1

Preparation method of high-toughness boride-carbide composite ceramic

A preparation method of a high-toughness boride-carbide composite ceramic relates to a preparation method of a boride-carbide composite ceramic and solves the problems that in the conventional preparation of the boride-carbide composite ceramic, due to high sintering temperature and high sintering pressure, the preparation cost is high and the prepared boride-carbide composite ceramic is poor in mechanical property and fracture toughness. The preparation method of the high-toughness boride-carbide composite ceramic comprises the following steps : adding a dispersing medium into boride and carbide; uniformly mixing the dispersing medium, the boride and the carbide; pressing the mixture into a blank material; and sintering the blank material in a two-section pressure-free sintering way at alow temperature and a high temperature sequentially. The sizes and the distribution of grain crystals in the boride-carbide composite ceramic which is prepared under the low-temperature pressure-freeconditions are uniform; the fracture toughness is as high as 5.0-13MPa.m<-1/2>; and the bending strength is as high as 400-1000 MPa; the boride-carbide composite ceramic with excellent comprehensive mechanical property can be prepared; the preparation cost is reduced; and the application range is widened.
Owner:吉林长玉特陶新材料技术股份有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products