Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5018 results about "Polymer solution" patented technology

Polymer solutions are solutions containing dissolved polymers. These may be liquid solutions (e.g. in aqueous solution), or solid solutions (e.g. a substance which has been plasticized). The introduction into the polymer of small amounts of a solvent (plasticizer) reduces the temperature of glass transition, the yield temperature, and the viscosity of a melt. An understanding of the thermodynamics of a polymer solution is critical to prediction of its behavior in manufacturing processes — for example, its shrinkage or expansion in injection molding processes, or whether pigments and solvents will mix evenly with a polymer in the manufacture of paints and coatings.

Microparticle coated medical device

A drug-loaded microparticle is applied to a medical device for subsequent application to biological tissues. A method of formulating a drug-loaded microparticle and applying it to the surface of a medical device, such as a stent, is disclosed. The drug-loaded microparticle is formulated by combining a drug with various chemical solutions. Specified sizes of the microparticles and amounts of drug(s) contained within the microparticles may be varied by altering the proportions of the chemicals / solutions. In addition to various drugs, therapeutic substances and radioactive isotopes may also be loaded into the microparticles. The drug-loaded microparticle are suspended in a polymer solution forming a polymer matrix. The polymer matrix may be applied to the entire surface or only selected portions of the medical device via dipping, spraying or combinations thereof.
Owner:ABBOTT CARDIOVASCULAR

Functional polymer nano composite material and preparation method and uses thereof

The present invention relates to a polymer nano-composite of the functional inorganic nano-particle with intermingle prepared by electrospinning method, and the use of the composite. The precursory sol of the functional inorganic nano-particle is prepared by the sol-gel method, and is mixed with the polymer solution to form spinning fluid, adding precursor of dopant if necessary, and then the mixed spinning fluid is sprayed on to the electric collecting board with the action of the electric field force by electrospinning method to obtain functional polymer nano-composite with intermingle. The equipment of the invention is simple, the operation is easy, the components, structure and characteristics of the composite is easy to control, the structure is stable, the inorganic nano-particle is dispersed uniformly. According to the difference of the functionality of the inorganic nano-particles, the composite can be used in conducting material, antistatic material, magnetic material, electrochromic material, photocatalysis and ecology environment material, antibiosis material and biomaterial.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Electrospinning of fine hollow fibers

A method for electrospinning nanofibers having a core-sheath, tubular, or composite structure is disclosed. The process uses a spinneret having first and second capillaries that channel first and second fluids in the spinneret, the second capillary surrounding the first. A high voltage is applied between the spinneret and a spaced conductive collector. In one embodiment, the first fluid is a mineral oil and the second fluid is a polymeric solution that may include a polymer, a catalyst, a solvent, and a sol-gel precursor. The as-spun nanofiber includes an oil core and a composite sheath. The oil may be removed to produce a composite tubular fiber or the polymer and oil may be removed by calcination to produce a ceramic tubular fiber. In other embodiments, miscible fluids are used to produce porous nanofibers, selected additives functionalize the surfaces of the nanofibers and / or conjugated polymers are used.
Owner:UNIV OF WASHINGTON

System and method for preparation of cells for 3D image acquisition

The present invention provides a method for embedding particles in a solid structure including the steps of extruding a slurry of particles and a polymeric solution into a linear polymer medium having particles embedded into a polymer portion; and curing the polymer portion of the linear polymer medium.
Owner:UNIV OF WASHINGTON +1

Electrospinning nano-fiber electret filtering material and its preparation method

ActiveCN104289042AHigh surface electrostatic potentialHigh super strong electrostatic adsorption performanceSynthetic resin layered productsFiltration separationPorosityFiber
The invention relates to an electrospinning nano-fiber electret filtering material and its preparation method. The high-efficiency and low-resistsance nano-fiber electret filtering material having no interfibrous adhesion and having a fluffy three-dimensional netted intercommunication structure is prepared through controlling the component and the temperatures of a polymer solution in an electrospinning process and carrying out one-step forming in the nano-fiber forming rapid cooling process, wherein the gram weight of the above nanofiber layer is 0.01-70g/m<2>, and the porosity is not less than 80%. The surface electrostatic potential of the nano-fiber electret filtering material is 800-6000V, and the surface charges have lasting storage stability, the hydrophobic angle is greater than 150DEG, the filtering efficiency of the material to particles of 0.006-1[mu]m can reach above 99.999%, the piezoresistance is less than 20Pa, and the dust containing capacity is 300-3600g/m<2>. The preparation method is simple, and the filtering material has wide application prospects in the fields of individual protection mouth mask filtration, indoor air purification and filtration, and high efficiency/ultrahigh efficiency air filtration.
Owner:DONGHUA UNIV

Integral bi-layer separator-electrode construction for lithium-ion batteries

A porous bi-layer separator composed of a first layer with a contacting array of non-conducting particles overlaid with a second layer of a microporous polymer layer, may be fabricated on the electrode surface of the anode of a lithium-ion battery to form an integral electrode-separator construction. The bi-layer separator may prevent development of a direct electronic path between the anode and cathode of the battery while accommodating electrolyte solution and enabling passage of lithium ions. Such an integral separator should be mechanically robust and tolerant of elevated temperatures. Exemplary bi-layer separators may be fabricated by sequential deposition of solvent-containing slurries and polymer solutions with subsequent controlled evaporation of solvent. The elevated temperature performance of lithium-ion battery cells incorporating such integral electrode-bi-layer separators was demonstrated to exceed the performance of similar cells using commercial and experimental single layer polymer separators.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method for making a porous Polymeric material

Porous polymers having a plurality of openings or chambers that are highly convoluted, with each chamber being defined by multiple, thin, flat partitions are produced by a new gel enhanced phase separation technique. In a preferred embodiment, a second solvent is added to a polymer solution, the second solvent causing the solution to gel. The gel can then be shaped as needed. Subsequent solvent extraction leaves the porous polymeric body of defined shape. The porous polymers have utility as medical prostheses, the porosity permitting ingrowth of neighboring tissue. The present technique also enhances shape-making capability, for example, of bifurcated vascular grafts, which feature a common entrance region but two or more exit regions.
Owner:KENSEY NASH CORP

Temperature-resistant salt-resistant efficient gel, and preparation and use thereof

The invention discloses a temperature resistant salt tolerant high efficiency gel and a preparation method and application thereof. The preparation method is characterized in that the preparation method comprises the following steps: preparing a comb-shaped associated copolymer PAH containing macromonomers and functional hydrophobic monomers into an aqueous solution having the concentration of 0.1 to 4g/L, the crosslinking agent concentration of 0.01 to 1.0g/L, the surfactant concentration of 0.01 to 8mmol/L and the sodium sulfite thermal stabilizer concentration of 0.005 to 1.0g/L; adding the aqueous solution into a mixing container with a stirring device; stirring the aqueous solution evenly at the room temperature; regulating the pH value of the solution to be equal to between 4 and 11, and obtaining a temperature resistant salt tolerant high efficiency gel polymer solution system used for tertiary oil recovery and scavenge, displacement modification, profile modification or water shutoff. The polymer solution system has micro-crosslinking to form the gel during the flowage inside the oil reservoir. The gel has good elasticity, not easy dehydration, stable gelling performance, and excellent tackification, temperature resistance, salt tolerance, shearing resistance and ageing resistance.
Owner:CHENGDU UNIVERSITY OF TECHNOLOGY

Umbrella-shaped electrostatic spinning sprayer and electrostatic spinning method

The invention relates to an umbrella-shaped electrostatic spinning sprayer and an electrostatic spinning method. The sprayer comprises an umbrella-shaped spinning nozzle, a numerical control type infusion device and a solution collecting groove, wherein the numerical control type infusion device mainly comprises a solution propeller and a controller; the middle of the umbrella-shaped spinning nozzle is provided with a cylindrical hollow portion, and an output end of the solution propeller is placed into the cylindrical hollow portion of the umbrella-shaped spinning nozzle; the controller controls flow velocity and flow of spinning solutions; and the solution collecting groove is placed in the bottom of the umbrella-shaped spinning nozzle. The electrostatic spinning method comprises that a binding post on the umbrella-shaped spinning nozzle is connected with a high-voltage positive electrode, conducting polymer solutions are continuously added to the umbrella-shaped spinning nozzle which is horizontally placed through the numerical control type infusion device, electrostatic spinning is started, collection is achieved through a collecting device, and nano-fibers are formed. The sprayer avoids blocking phenomena, and is easy to clean and good in stability; and the electrostatic spinning method improves production efficiency and the yield of electrostatic spinning.
Owner:DONGHUA UNIV

Composite fiber filter comprising nan0-materials, and manufacturing method and apparatus thereof

InactiveUS20080217807A1Improve efficiencyPronounced antibacterial activityLayered productsWood working apparatusYarnElectrospinning
Disclosed herein is a method for manufacturing a composite fiber filter having high efficiency and high functionality, the method comprising: melt-spinning microfiber yarns on a forming rod, which is made of a conductive material, grounded at one end thereof and rotatably driven, using a melt-spinning device, to form on the forming layer a microfiber layer consisting of the microfiber yarns; and electrospinning on the microfiber layer an electrospinnable polymer solution having a given dielectric constant, using an electrospinning device, so as to form on the microfiber layer a nanofiber layers consisting of nanofiber yarns, wherein the microfiber yarns of the microfiber layer and the nanofiber yarns of the nanofiber layer contain silver nanoparticles so as to have an antibacterial function.
Owner:LEE BONG DAE +2

Electrostatic spinning preparation method of ceramic nanometer composite fibers

InactiveCN101905974AWide selection criteriaIncrease varietyFilament/thread formingWater bathsFiber
The invention discloses an electrostatic spinning preparation method of ceramic nanometer composite fibers, comprising the following concrete steps of: firstly, according to volume percentage, weighing 3-10 percent of ceramic nanometer particles with the partilce size of 10-300 nm, 3-20 percent of ceramic precursor, 5-30 percent of spinnable polymer and 40-89 percent of solvent with the total volume of 100 percent; secondly, adding the spinnable polymer into the solvent, heating in water bath and magnetically stirring; thirdly, adding the ceramic precursor into the spinnable polymer solution obtained in the second step, heating in water bath, magnetically stirring and ageing; fourthly, adding the ceramic nanometer particles into the ceramic precursor spinnable solution obtained in the third step, heating at constant temperature in the water bath and forming a spinning solution by carrying out ultrasonic dispersion and constant temperature swelling; fifthly, preparing composite nanometer fibers by the spinning solution according to an electrostatic spinning technology; and sixthly, obtaining the ceramic nanometer composite fibers by sintering the composite nanometer fibers. In the method, raw materials have wide selection conditions and wide optional range.
Owner:XIAN UNIV OF TECH

Method for preparing nano cellulose microfibril reinforced polymer composite material

The invention discloses a method for in situ generating a nano cellulose microfibril reinforced polymer composite material, comprising the following steps: using ionic liquid as a primary solvent, dissolving cellulose, or mixing cellulose with other polymers via solution mixing, and controlling the solubility of the cellulosic material in the solvent to maintain naturally occurring nano cellulose microfibril in the cellulosic material, so as to in situ obtain the nano cellulose microfibril reinforced polymer composite material. The nano microfibril can be observed under a transmission microscope obviously, which is different from the completely dissolved cellulose solution. In the preparing process, the dissolving temperature is controlled within 30-150 DEG C, and stirring and vacuum deaeration are used as auxiliary. By controlling the dissolving time, solution concentration and ratio of mixing, a polymer solution containing cellulose microfibril with dimension of 5-300 nanometers can be obtained. The polymer solution can be used for preparing composite material fiber, hollow fibrous membrane, diaphragm, film, gel, porous material and other known applications of enhanced material.
Owner:INST OF CHEM CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products